
Oracle®

JavaServer Pages Developer’s Guide and Reference

Release 9.0.1

(OracleJSP 1.1.2.3)

June 2001

Part No. A90208-01

Oracle JavaServer Pages Developer’s Guide and Reference, Release 9.0.1

Part No. A90208-01

Copyright © 2000, 2001 Oracle Corporation. All rights reserved.

Primary Author: Brian Wright

Contributing Author: Michael Freedman

Contributors: Julie Basu, Alex Yiu, Sunil Kunisetty, Gael Stevens, YaQing Wang, Song Lin, Hal
Hildebrand, Jasen Minton, Matthieu Devin, Jose Alberto Fernandez, Olga Peschansky, Jerry Schwarz,
Clement Lai, Shinji Yoshida, Kenneth Tang, Robert Pang, Kannan Muthukkaruppan, Ralph Gordon,
Shiva Prasad, Sharon Malek, Jeremy Lizt, Kuassi Mensah, Susan Kraft, Sheryl Maring, Ellen Barnes,
Angie Long, Sanjay Singh, Olaf van der Geest

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleJSP, JDeveloper, Oracle Net, Oracle Objects, Oracle9i,
Oracle8i, Oracle8, Oracle7, Oracle9i Lite, PL/SQL, Pro*C, SQL*Net, and SQL*Plus are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

Contents

Send Us Your Comments ... xi

Preface... xiii

Intended Audience ... xiii
Structure .. xiv
Related Documents... xv
Additional Resources ... xviii
Conventions.. xix
Documentation Accessibility ... xix

1 General Overview

Introduction to JavaServer Pages... 1-2
What a JSP Page Looks Like.. 1-2
Convenience of JSP Coding Versus Servlet Coding .. 1-3
Separation of Business Logic from Page Presentation—Calling JavaBeans 1-5
JSP Pages and Alternative Markup Languages.. 1-6

JSP Execution ... 1-7
JSP Containers in a Nutshell ... 1-7
JSP Pages and On-Demand Translation.. 1-7
Requesting a JSP Page.. 1-8

Overview of JSP Syntax Elements... 1-10
Directives ... 1-10
Scripting Elements.. 1-12
JSP Objects and Scopes .. 1-14
 iii

JSP Actions and the <jsp: > Tag Set.. 1-18
Tag Libraries .. 1-23

2 Overview of Oracle’s JSP Implementation

Portability and Functionality Across Servlet Environments .. 2-2
OracleJSP Portability .. 2-2
OracleJSP Extended Functionality for Servlet 2.0 Environments .. 2-2

Support for OracleJSP in Oracle Environments ... 2-4
Overview of the Oracle9i Servlet Engine (OSE) ... 2-4
Overview of the Oracle9i Application Server... 2-5
Role of the Oracle HTTP Server, Powered by Apache.. 2-6
Oracle Web Application Data-Access Strategies.. 2-8
Overview of Other Oracle JSP Environments .. 2-9

Support for OracleJSP in Non-Oracle Environments .. 2-11
Overview of OracleJSP Programmatic Extensions ... 2-12

Overview of Portable OracleJSP Extensions... 2-12
Overview of Oracle-Specific Extensions.. 2-15
Use of OracleJSP with Oracle PL/SQL Server Pages .. 2-16

Summary of OracleJSP Releases and Feature Sets... 2-18
OracleJSP Releases Provided with Oracle Platforms... 2-18
OracleJSP Feature Notes for Previous Releases ... 2-19

OracleJSP Execution Models .. 2-21
On-Demand Translation Model ... 2-21
Oracle9i Servlet Engine Pre-Translation Model ... 2-22

Oracle JDeveloper Support for OracleJSP ... 2-23

3 Basics

Preliminary Considerations .. 3-2
Installation and Configuration Overview... 3-2
Development Environments Versus Deployment Environments ... 3-2
Client-Side Considerations.. 3-3

Application Root and Doc Root Functionality .. 3-4
Application Roots in Servlet 2.2 Environments ... 3-4
OracleJSP Application Root Functionality in Servlet 2.0 Environments 3-5

Overview of JSP Applications and Sessions ... 3-6
iv

General OracleJSP Application and Session Support ... 3-6
JSP Default Session Requests .. 3-6

JSP-Servlet Interaction... 3-7
Invoking a Servlet from a JSP Page.. 3-7
Passing Data to a Servlet Invoked from a JSP Page... 3-8
Invoking a JSP Page from a Servlet.. 3-8
Passing Data Between a JSP Page and a Servlet... 3-9
JSP-Servlet Interaction Samples.. 3-10

JSP Resource Management ... 3-12
Standard Session Resource Management—HttpSessionBindingListener 3-12
Overview of Oracle Extensions for Resource Management... 3-17

JSP Runtime Error Processing .. 3-18
Using JSP Error Pages .. 3-18
JSP Error Page Example... 3-19

JSP Starter Sample for Data Access... 3-21

4 Key Considerations

General JSP Programming Strategies, Tips, and Traps ... 4-2
JavaBeans Versus Scriptlets... 4-2
Use of Enterprise JavaBeans in JSP Pages ... 4-3
Use of JDBC Performance Enhancement Features .. 4-9
Static Includes Versus Dynamic Includes ... 4-12
When to Consider Creating and Using JSP Tag Libraries .. 4-14
Use of a Central Checker Page.. 4-15
Workarounds for Large Static Content in JSP Pages... 4-16
Method Variable Declarations Versus Member Variable Declarations.............................. 4-18
Page Directive Characteristics .. 4-19
JSP Preservation of White Space and Use with Binary Data.. 4-20

Key OracleJSP Configuration Issues .. 4-24
Optimization of JSP Execution ... 4-24
Classpath and Class Loader Issues (Non-OSE Only).. 4-25

OracleJSP Runtime Page and Class Reloading (Non-OSE Only) ... 4-29
Dynamic Page Retranslation... 4-29
Dynamic Page Reloading .. 4-29
Dynamic Class Reloading ... 4-30
 v

Considerations for the Oracle9i Servlet Engine ... 4-32
Introduction to the Oracle JVM and JDBC Server-Side Internal Driver 4-33
Database Connections Through Java... 4-33
Use of JNDI by the Oracle9i Servlet Engine.. 4-36
Equivalent Code for OracleJSP Runtime Configuration Parameters.................................. 4-37

Considerations for Apache/JServ Servlet Environments .. 4-38
Use of Apache/JServ in the Oracle9i Application Server... 4-38
Dynamic Includes and Forwards in Apache/JServ... 4-39
Application Framework for Apache/JServ .. 4-41
JSP and Servlet Session Sharing.. 4-42
Directory Alias Translation ... 4-42

5 OracleJSP Extensions

Portable OracleJSP Programming Extensions ... 5-2
JML Extended Datatypes ... 5-2
OracleJSP Support for XML and XSL .. 5-9
Oracle Data-Access JavaBeans .. 5-13
OracleJSP Tag Library for SQL ... 5-24

Oracle-Specific Programming Extensions.. 5-33
OracleJSP Event Handling—JspScopeListener .. 5-33
OracleJSP Support for Oracle SQLJ.. 5-34

OracleJSP Application and Session Support for Servlet 2.0 .. 5-38
Overview of globals.jsa Functionality ... 5-38
Overview of globals.jsa Syntax and Semantics .. 5-40
The globals.jsa Event Handlers... 5-43
Global Declarations and Directives.. 5-47

6 JSP Translation and Deployment

Functionality of the OracleJSP Translator.. 6-2
Generated Code Features .. 6-3
General Conventions for Output Names .. 6-4
Generated Package and Class Names (On-Demand Translation)... 6-5
Generated Files and Locations (On-Demand Translation)... 6-7
Sample Page Implementation Class Source.. 6-9

Overview of Features and Logistics in Deployment to Oracle9i... 6-14
vi

Database Schema Objects for Java.. 6-14
Oracle HTTP Server as a Front-End Web Server ... 6-16
URLs for the Oracle9i Servlet Engine .. 6-17
Static Files for JSP Applications in the Oracle9i Servlet Engine .. 6-20
Server-Side Versus Client-Side Translation.. 6-22
Overview of Hotloaded Classes in Oracle9i ... 6-24

Tools and Commands for Translation and Deployment to Oracle9i 6-26
The ojspc Pre-Translation Tool ... 6-26
Overview of the loadjava Tool ... 6-40
Overview of the sess_sh Session Shell Tool.. 6-42

Deployment to Oracle9i with Server-Side Translation ... 6-45
Loading Untranslated JSP Pages into Oracle9i (loadjava).. 6-45
Translating and Publishing JSP Pages in Oracle9i (Session Shell publishjsp)................... 6-46

Deployment to Oracle9i with Client-Side Translation.. 6-59
Pre-Translating JSP Pages (ojspc) ... 6-59
Loading Translated JSP Pages into Oracle9i (loadjava) .. 6-64
Hotloading Page Implementation Classes in Oracle9i.. 6-68
Publishing Translated JSP Pages in Oracle9i (Session Shell publishservlet) 6-69

Additional JSP Deployment Considerations .. 6-73
Doc Root for Oracle9i Application Server Versus Oracle9i Servlet Engine 6-73
Use of ojspc for Pre-Translation for Non-OSE Environments ... 6-74
General JSP Pre-Translation Without Execution.. 6-75
Deployment of Binary Files Only... 6-75
WAR Deployment .. 6-77
Deployment of JSP Pages with JDeveloper .. 6-79

7 JSP Tag Libraries and the Oracle JML Tags

Standard Tag Library Framework .. 7-2
Overview of a Custom Tag Library Implementation.. 7-2
Tag Handlers ... 7-4
Scripting Variables and Tag-Extra-Info Classes... 7-8
Access to Outer Tag Handler Instances .. 7-10
Tag Library Description Files ... 7-11
Use of web.xml for Tag Libraries ... 7-12
The taglib Directive .. 7-14
 vii

End-to-End Example: Defining and Using a Custom Tag.. 7-15
Overview of the JSP Markup Language (JML) Sample Tag Library 7-20

JML Tag Library Philosophy... 7-21
JML Tag Categories .. 7-21
JML Tag Library Description File and taglib Directive... 7-22

JSP Markup Language (JML) Tag Descriptions .. 7-30
Syntax Symbology and Notes ... 7-30
Bean Binding Tag Descriptions... 7-30
Logic and Flow Control Tag Descriptions .. 7-34

8 OracleJSP Globalization Support

Content Type Settings in the page Directive ... 8-2
Dynamic Content Type Settings .. 8-4
OracleJSP Extended Support for Multibyte Parameter Encoding .. 8-5

The setReqCharacterEncoding() Method .. 8-5
The translate_params Configuration Parameter.. 8-6

9 Sample Applications

Basic Samples .. 9-2
Hello Page—hellouser.jsp.. 9-2
Usebean Page—usebean.jsp .. 9-3
Shopping Cart Page—cart.jsp ... 9-5
Information Page—info.jsp ... 9-10

JDBC Samples ... 9-12
Simple Query—SimpleQuery.jsp ... 9-12
User-Specified Query—JDBCQuery.jsp .. 9-14
Query Using a Query Bean—UseHtmlQueryBean.jsp ... 9-15
Connection Caching—ConnCache3.jsp and ConnCache1.jsp ... 9-18

Data-Access JavaBean Samples .. 9-23
Page Using DBBean—DBBeanDemo.jsp ... 9-23
Page Using ConnBean—ConnBeanDemo.jsp... 9-25
Page Using CursorBean—CursorBeanDemo.jsp ... 9-26
Page Using ConnCacheBean—ConnCacheBeanDemo.jsp ... 9-28

Custom Tag Samples .. 9-31
JML Tag Sample—hellouser_jml.jsp.. 9-31
viii

Pointers to Additional Custom Tag Samples ... 9-33
Samples for Oracle-Specific Programming Extensions... 9-34

Page Using JspScopeListener—scope.jsp.. 9-34
XML Query—XMLQuery.jsp.. 9-38
SQLJ Queries—SQLJSelectInto.sqljsp and SQLJIterator.sqljsp.. 9-39

Samples Using globals.jsa for Servlet 2.0 Environments ... 9-43
globals.jsa Example for Application Events—lotto.jsp ... 9-43
globals.jsa Example for Application and Session Events—index1.jsp 9-46
globals.jsa Example for Global Declarations—index2.jsp .. 9-49

A General Installation and Configuration

System Requirements .. A-2
OracleJSP Installation and Web Server Configuration ... A-3

Required and Optional Files for OracleJSP... A-3
Configuration of Web Server and Servlet Environment to Run OracleJSP A-7

OracleJSP Configuration ... A-15
OracleJSP Configuration Parameters (Non-OSE) .. A-15
OracleJSP Configuration Parameter Settings ... A-26

B Servlet and JSP Technical Background

Background on Servlets ... B-2
Review of Servlet Technology .. B-2
The Servlet Interface... B-3
Servlet Containers... B-3
Servlet Sessions ... B-4
Servlet Contexts .. B-6
Application Lifecycle Management Through Event Listeners .. B-7
Servlet Invocation ... B-8

Web Application Hierarchy .. B-9
Standard JSP Interfaces and Methods .. B-12

C Compile-Time JML Tag Support

JML Compile-Time Versus Runtime Considerations and Logistics ... C-2
General Compile-Time Versus Runtime Considerations ... C-2
 ix

The taglib Directive for Compile-Time JML Support.. C-3
JML Compile-Time/1.0.0.6.x Syntax Support... C-4

JML Bean References and Expressions, Compile-Time Implementation C-4
Attribute Settings with JML Expressions .. C-5

JML Compile-Time/1.0.0.6.x Tag Support... C-7
JML Tag Summary, 1.0.0.6.x/Compile-Time Versus 1.1.x.x/Runtime................................. C-7
Descriptions of Additional JML Tags, Compile-Time Implementation C-8
x

Send Us Your Comments

Oracle JavaServer Pages Developer’s Guide and Reference, Release 9.0.1

Part No. A90208-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: jpgcomment_us@oracle.com
■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

This document introduces and explains Oracle’s implementation of JavaServer
Pages (JSP) technology, specified by Sun Microsystems. The document summarizes
standard features, as specified by Sun, but focuses primarily on Oracle-specific
implementations and extensions in the OracleJSP product.

Intended Audience
This document is intended for developers interested in using OracleJSP to create
Web applications based on JavaServer Pages technology. It assumes that working
Web and servlet environments already exist, and that readers are already familiar
with the following:

■ general Web technology

■ general servlet technology (some technical background is provided in
Appendix B)

■ how to configure their Web server and servlet environments

■ HTML

■ Java

■ Oracle JDBC (for JSP applications accessing an Oracle database)

■ Oracle SQLJ (for JSP database applications using SQLJ)

Note: OracleJSP release 1.1.2.x is a complete implementation of
the Sun Microsystems JavaServer Pages Specification, Version 1.1.
 xiii

This document focuses on Oracle JSP extensions, and on features and logistics
particular to running JSP pages in the Oracle9i Servlet Engine.

While some information about standard JSP 1.1 technology and syntax is provided
in Chapter 1 and elsewhere, there is no attempt at completeness in this area. For
additional information about standard JSP 1.1 features, consult the Sun
Microsystems JavaServer Pages Specification, Version 1.1 or other appropriate
reference materials.

Because the JSP 1.1 specification relies on a servlet 2.2 environment, this document
is geared largely toward such environments. OracleJSP has special features for
earlier servlet environments, however, and there is special discussion of these
features as they relate to servlet 2.0 environments, particularly Apache/JServ, which
is included with the Oracle9i Application Server.

Structure
This document includes the following chapters and appendixes:

■ Chapter 1, "General Overview"—This chapter highlights standard JSP 1.1
technology. (It is not intended as a complete reference.)

■ Chapter 2, "Overview of Oracle’s JSP Implementation"—This chapter discusses
support for OracleJSP in both Oracle and non-Oracle JSP environments, and
introduces Oracle JSP extensions and features.

■ Chapter 3, "Basics"—This chapter introduces basic JSP programming
considerations and provides a starter sample for database access.

■ Chapter 4, "Key Considerations"—This chapter discusses a variety of general
programming and configuration issues the developer should be aware of. It also
covers considerations specific to the OSE and Apache/JServ environments.

■ Chapter 5, "OracleJSP Extensions"—This chapter covers Oracle JSP
extensions—both Oracle-specific extensions and extensions that are portable to
other JSP environments.

■ Chapter 6, "JSP Translation and Deployment"—This chapter focuses on
procedures and logistics in deploying JSP pages to Oracle9i to run in the
Oracle9i Servlet Engine, but also covers general JSP translation and deployment
features and issues.

■ Chapter 7, "JSP Tag Libraries and the Oracle JML Tags"—This chapter
introduces the basic JSP 1.1 framework for custom tag libraries and also
xiv

provides an overview and tag descriptions for the JSP 1.1 (runtime)
implementation of the Oracle JML sample tag library.

■ Chapter 8, "OracleJSP Globalization Support"—This chapter discusses both
standard and Oracle-specific features for globalization support.

■ Chapter 9, "Sample Applications"—This chapter contains a set of sample
applications covering both standard JSP technology and Oracle extensions.

■ Appendix A, "General Installation and Configuration"—This appendix covers
OracleJSP required and optional files, configuration steps for non-Oracle
environments such as Apache/JServ and Tomcat, and OracleJSP configuration
parameters for on-demand translation.

■ Appendix B, "Servlet and JSP Technical Background"—This appendix provides
a brief background of servlet technology and introduces the standard JSP
interfaces for translated pages.

■ Appendix C, "Compile-Time JML Tag Support"—This chapter provides an
overview of the compile-time implementation of the Oracle JML sample tag
library (as supported in pre-JSP 1.1 releases), and documents tags not
supported in the runtime implementation documented in Chapter 7.

Related Documents
See the following additional documents available from the Oracle Java Platform
group:

■ Oracle9i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle9i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC, SQLJ, or EJBs) is in this book.

■ Oracle9i Servlet Engine Developer’s Guide

This book documents use of the Oracle9i Servlet Engine, the servlet container in
Oracle9i.

■ Oracle9i Java Tools Reference

This book documents Java-related tools and utilities for use with Oracle9i or in
deploying applications to Oracle9i (such as the Oracle9i session shell and
loadjava tools).
 xv

■ Oracle9i JDBC Developer’s Guide and Reference

This book covers programming syntax and features of Oracle’s implementation
of the JDBC standard (for Java Database Connectivity). This includes an
overview of the Oracle JDBC drivers, details of Oracle’s implementation of
JDBC 1.22 and 2.0 features, and discussion of Oracle JDBC type extensions and
performance extensions.

■ Oracle9i JPublisher User’s Guide

This book describes how to use the Oracle JPublisher utility to translate object
types and other user-defined types to Java classes. If you are developing SQLJ
or JDBC applications that use object types, VARRAY types, nested table types,
or object reference types, then JPublisher can generate custom Java classes to
map to them.

■ Oracle9i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

■ Oracle9i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle9i database. With stored procedures (functions, procedures, triggers, and
SQL methods), Java developers can implement business logic at the server
level, thereby improving application performance, scalability, and security.

■ Oracle9i Enterprise JavaBeans Developer’s Guide and Reference

This book describes Oracle’s Enterprise JavaBeans implementation and
extensions.

■ Oracle9i CORBA Developer’s Guide and Reference

This book describes Oracle’s CORBA implementation and extensions.

The following documentation is for Oracle products that incorporate OracleJSP. You
may want to refer to them for JSP information, including installation and
configuration, for those products:

■ Oracle9i Application Server Documentation Library

■ Oracle Application Server, Release 4.0.8.2
Developer’s Guide: JServlet and JSP Applications

■ Oracle JDeveloper online help
xvi

■ Oracle Web-to-go Implementation Guide

The following documents from the Oracle Server Technologies group may also
contain information of interest.

■ Oracle9i Application Developer’s Guide - XML

■ Oracle9i XML Reference

These books provides information about the Oracle XML-SQL Utility. Some of
this is relevant to XML-related support provided by OracleJSP.

■ Oracle9i Application Developer’s Guide - Fundamentals

This book introduces basic design concepts and programming features in using
Oracle9i and creating data-access applications.

■ Oracle9i Supplied PL/SQL Packages and Types Reference

This book documents PL/SQL packages available as part of the Oracle9i
database, some of which may be useful to call from JDBC applications.

■ PL/SQL User’s Guide and Reference

PL/This book explains the concepts and features of PL/SQL, Oracle’s
procedural language extension to SQL.

■ Oracle9i Globalization Support Guide

This book contains information about Oracle Globalization Support
environment variables, character sets, and territory and locale settings. In
addition, it contains an overview of common globalization issues, typical
scenarios, and related considerations for OCI and SQL programmers.

■ Oracle9i SQL Reference

This book contains a complete description of the content and syntax of the SQL
commands and features used to manage information in an Oracle database.

■ Oracle Net Services Administrator’s Guide

This book contains information about the Oracle8 Connection Manager and
Oracle Net network administration in general.

■ Oracle Advanced Security Administrator’s Guide

This book describes features of the Oracle Advanced Security Option (formerly
known as ANO or ASO).
 xvii

■ Oracle9i Database Reference

This book contains general reference information about the Oracle9i database.

■ Oracle9i Database Error Messages

This book contains information about error messages that can be passed by the
Oracle9i database.

Additional Resources
The following Oracle Technology Network (OTN) resources are available for further
information about JavaServer Pages:

■ OTN Web site for Java servlets and JavaServer Pages:

http://technet.oracle.com/tech/java/servlets/

■ OTN JSP discussion group, accessible through the following address:

http://technet.oracle.com/support/bboard/discussions.htm

The following resources are available from Sun Microsystems:

■ Javasoft Web site for JavaServer Pages:

http://www.javasoft.com/products/jsp/index.html

■ jsp-interest discussion group for JavaServer Pages

To subscribe, send an e-mail to listserv@java.sun.com with the following
line in the body of the message:

subscribe jsp-interest yourlastname yourfirstname

It is recommended, however, that you request only the daily digest of the
posted e-mails. To do this add the following line to the message body as well:

set jsp-interest digest
xviii

Conventions
The following conventions are used in this document:

Documentation Accessibility
Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at:

http://www.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

Convention Meaning

italicized regular text Italicized regular text is used for emphasis or to indicate
a term that is being defined or will be defined shortly.

. . . Horizontal ellipsis points in sample code indicate the
omission of a statement or statements or part of a
statement. This is done when you would normally
expect additional statements or code to appear, but such
statements or code would not be relevant to the example.

code text Code text within regular text indicates commands,
option names, parameter names, Java syntax, class
names, object names, method names, variable names,
Java types, Oracle datatypes, file names, and directory
names.

italicized_code_text Italicized code text in a program statement indicates
something that must be provided by the user.

[italicized_code_text] Square brackets enclosing italicized code text in a
program statement indicates something that can
optionally be provided by the user.
 xix

xx

 General Overv
1

General Overview

This chapter reviews standard features and functionality of JavaServer Pages
technology. For further information, consult the Sun Microsystems JavaServer Pages
Specification, Version 1.1.

(For an overview of Oracle-specific OracleJSP features, see Chapter 2, "Overview of
Oracle’s JSP Implementation". Also note that Appendix B, "Servlet and JSP
Technical Background", provides related background on standard servlet and JSP
technology.)

The following topics are covered here:

■ Introduction to JavaServer Pages

■ JSP Execution

■ Overview of JSP Syntax Elements
iew 1-1

Introduction to JavaServer Pages
Introduction to JavaServer Pages
JavaServer Pages(TM) is a technology specified by Sun Microsystems as a
convenient way of generating dynamic content in pages that are output by a Web
application (an application running on a Web server).

This technology, which is closely coupled with Java servlet technology, allows you
to include Java code snippets and calls to external Java components within the
HTML code (or other markup code, such as XML) of your Web pages. JavaServer
Pages (JSP) technology works nicely as a front-end for business logic and dynamic
functionality in JavaBeans and Enterprise JavaBeans (EJBs).

JSP code is distinct from other Web scripting code, such as JavaScript, in a Web
page. Anything that you can include in a normal HTML page can be included in a
JSP page as well.

In a typical scenario for a database application, a JSP page will call a component
such as a JavaBean or Enterprise JavaBean, and the bean will directly or indirectly
access the database, generally through JDBC or perhaps SQLJ.

A JSP page is translated into a Java servlet before being executed (typically on
demand, but sometimes in advance), and it processes HTTP requests and generates
responses similarly to any other servlet. JSP technology offers a more convenient
way to code the servlet.

Furthermore, JSP pages are fully interoperable with servlets—JSP pages can include
output from a servlet or forward to a servlet, and servlets can include output from a
JSP page or forward to a JSP page.

What a JSP Page Looks Like
Here is an example of a simple JSP page. (For an explanation of JSP syntax elements
used here, see "Overview of JSP Syntax Elements" on page 1-10.)

<HTML>
<HEAD><TITLE>The Welcome User JSP</TITLE></HEAD>
<BODY>
<% String user=request.getParameter("user"); %>
<H3>Welcome <%= (user==null) ? "" : user %>!</H3>
<P> Today is <%= new java.util.Date() %>. Have a nice day! :-)</P>
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
1-2 JavaServer Pages Developer’s Guide and Reference

Introduction to JavaServer Pages
</BODY>
</HTML>

In a JSP page, Java elements are set off by tags such as <% and %>, as in the
preceding example. In this example, Java snippets get the user name from an HTTP
request object, print the user name, and get the current date.

This JSP page will produce the following output if the user inputs the name "Amy":

Convenience of JSP Coding Versus Servlet Coding
Combining Java code and Java calls into an HTML page is more convenient than
using straight Java code in a servlet. JSP syntax gives you a shortcut for coding
dynamic Web pages, typically requiring much less code than Java servlet syntax.
Following is an example contrasting servlet code and JSP code.

Servlet Code

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class Hello extends HttpServlet
{
 public void doGet(HttpServletRequest rq, HttpServletResponse rsp)
 {
 rsp.setContentType("text/html");
 try {
 General Overview 1-3

Introduction to JavaServer Pages
 PrintWriter out = rsp.getWriter();
 out.println("<HTML>");
 out.println("<HEAD><TITLE>Welcome</TITLE></HEAD>");
 out.println("<BODY>");
 out.println("<H3>Welcome!</H3>");
 out.println("<P>Today is "+new java.util.Date()+".</P>");
 out.println("</BODY>");
 out.println("</HTML>");
 } catch (IOException ioe)
 {
 // (error processing)
 }
 }
}

(See "The Servlet Interface" on page B-3 for some background information about the
standard HttpServlet abstract class, HttpServletRequest interface, and
HttpServletResponse interface.)

JSP Code

<HTML>
<HEAD><TITLE>Welcome</TITLE></HEAD>
<BODY>
<H3>Welcome!</H3>
<P>Today is <%= new java.util.Date() %>.</P>
</BODY>
</HTML>

Note how much simpler JSP syntax is. Among other things, it saves Java overhead
such as package imports and try...catch blocks.

Additionally, the JSP translator automatically handles a significant amount of
servlet coding overhead for you in the .java file that it outputs, such as directly or
indirectly implementing the standard javax.servlet.jsp.HttpJspPage
interface (see "Standard JSP Interfaces and Methods" on page B-12) and adding code
to acquire an HTTP session.

Also note that because the HTML of a JSP page is not embedded within Java print
statements as is the case in servlet code, you can use HTML authoring tools to
create JSP pages.
1-4 JavaServer Pages Developer’s Guide and Reference

Introduction to JavaServer Pages
Separation of Business Logic from Page Presentation—Calling J avaBeans
JSP technology allows separating the development efforts between the HTML code
that determines static page presentation, and the Java code that processes business
logic and presents dynamic content. It therefore becomes much easier to split
maintenance responsibilities between presentation and layout specialists who may
be proficient in HTML but not Java, and code specialists who may be proficient in
Java but not HTML.

In a typical JSP page, most Java code and business logic will not be within snippets
embedded in the JSP page—instead, it will be in JavaBeans or Enterprise JavaBeans
that are invoked from the JSP page.

JSP technology offers the following syntax for defining and creating an instance of a
JavaBeans class:

<jsp:useBean id="pageBean" class="mybeans.NameBean" scope="page" />

This example creates an instance, pageBean, of the mybeans.NameBean class (the
scope parameter will be explained later in this chapter).

Later in the page, you can use this bean instance, as in the following example:

Hello <%= pageBean.getNewName() %> !

(This prints "Hello Julie !", for example, if the name "Julie" is in the newName
attribute of pageBean, which might occur through user input.)

The separation of business logic from page presentation allows convenient division
of responsibilities between the Java expert who is responsible for the business logic
and dynamic content—this developer owns and maintains the code for the
NameBean class—and the HTML expert who is responsible for the static
presentation and layout of the Web page that the application user sees—this
developer owns and maintains the code in the .jsp file for this JSP page.

Tags used with JavaBeans—useBean to declare the JavaBean instance and
getProperty and setProperty to access bean properties—are further discussed
in "JSP Actions and the <jsp: > Tag Set" on page 1-18.
 General Overview 1-5

Introduction to JavaServer Pages
JSP Pages and Alternative Markup Languages
JavaServer Pages technology is typically used for dynamic HTML output, but the
Sun Microsystems JavaServer Pages Specification, Version 1.1 also supports additional
types of structured, text-based document output. A JSP translator does not process
text outside of JSP elements, so any text that is appropriate for Web pages in general
is typically appropriate for a JSP page as well.

A JSP page takes information from an HTTP request and accesses information from
a data server (such as through a SQL database query). It combines and processes
this information and incorporates it as appropriate into an HTTP response with
dynamic content. The content can be formatted as HTML, DHTML, XHTML, or
XML, for example.

For information about XML support, see "OracleJSP Support for XML and XSL" on
page 5-9.
1-6 JavaServer Pages Developer’s Guide and Reference

JSP Execution
JSP Execution
This section provides a top-level look at how a JSP is run, including on-demand
translation (the first time a JSP page is run), the role of the JSP container and the
servlet container, and error processing.

JSP Containers in a Nutshell
A JSP container is an entity that translates, executes, and processes JSP pages and
delivers requests to them.

The exact make-up of a JSP container varies from implementation to
implementation, but it will consist of a servlet or collection of servlets. The JSP
container, therefore, is executed by a servlet container. (Servlet containers are
summarized in "Servlet Containers" on page B-3.)

A JSP container may be incorporated into a Web server if the Web server is written
in Java, or the container may be otherwise associated with and used by the Web
server.

JSP Pages and On-Demand Translation
Presuming the typical on-demand translation scenario, a JSP page is usually
executed through the following steps:

1. The user requests the JSP page through a URL ending with a .jsp file name.

2. Upon noting the .jsp file name extension in the URL, the servlet container of
the Web server invokes the JSP container.

3. The JSP container locates the JSP page and translates it if this is the first time it
has been requested. Translation includes producing servlet code in a .java file
and then compiling the .java file to produce a servlet .class file.

The servlet class generated by the JSP translator subclasses a class (provided by
the JSP container) that implements the javax.servlet.jsp.HttpJspPage
interface (described in "Standard JSP Interfaces and Methods" on page B-12).
The servlet class is referred to as the page implementation class. This document
will refer to instances of page implementation classes as JSP page instances.

Note: The term JSP container is used in the Sun Microsystems
JavaServer Pages Specification, Version 1.1, replacing the term JSP
engine that was used in earlier specifications. The two terms are
synonymous.
 General Overview 1-7

JSP Execution
Translating a JSP page into a servlet automatically incorporates standard servlet
programming overhead into the generated servlet code, such as implementing
the HttpJspPage interface and generating code for its service method.

4. The JSP container triggers instantiation and execution of the page
implementation class.

The servlet (JSP page instance) will then process the HTTP request, generate an
HTTP response, and pass the response back to the client.

Requesting a JSP Page
A JSP page can be requested either directly—through a URL—or
indirectly—through another Web page or servlet.

Directly Request a JSP Page
As with a servlet or HTML page, the end-user can request a JSP page directly by
URL. For example, assume you have a HelloWorld JSP page that is located under
the myapp application root directory in the Web server, as follows:

myapp/dir1/HelloWorld.jsp

If it uses port 8080 of the Web server, you can request it with the following URL:

http://hostname:8080/myapp/dir1/HelloWorld.jsp

(The application root directory is specified in the servlet context of the application.
"Servlet Contexts" on page B-6 summarizes servlet contexts.)

The first time the end-user requests HelloWorld.jsp, the JSP container triggers
both translation and execution of the page. With subsequent requests, the JSP
container triggers page execution only; the translation step is no longer necessary.

Note: The preceding steps are loosely described for purposes of
this discussion. As mentioned earlier, each vendor decides how to
implement its JSP container, but it will consist of a servlet or
collection of servlets. For example, there may be a front-end servlet
that locates the JSP page, a translation servlet that handles
translation and compilation, and a wrapper servlet class that is
subclassed by each page implementation class (because a translated
page is not a pure servlet and cannot be run directly by the servlet
container). A servlet container is required to run each of these
components.
1-8 JavaServer Pages Developer’s Guide and Reference

JSP Execution
Indirectly Requesting a JSP Page
JSP pages, like servlets, can also be executed indirectly—linked from a regular
HTML page or referenced from another JSP page or from a servlet.

When invoking one JSP page from a JSP statement in another JSP page, the path can
be either relative to the application root—known as context-relative or
application-relative—or relative to the invoking page—known as page-relative. An
application-relative path starts with "/"; a page-relative path does not.

Be aware that, typically, neither of these paths is the same path as used in a URL or
HTML link. Continuing the example in the preceding section, the path in an HTML
link is the same as in the direct URL request, as follows:

The application-relative path in a JSP statement is:

<jsp:include page="/dir1/HelloWorld.jsp" flush="true" />

The page-relative path to invoke HelloWorld.jsp from a JSP page in the same
directory is:

<jsp:forward page="HelloWorld.jsp" />

("JSP Actions and the <jsp: > Tag Set" on page 1-18 discusses the jsp:include and
jsp:forward statements.)
 General Overview 1-9

Overview of JSP Syntax Elements
Overview of JSP Syntax Elements
You have seen a simple example of JSP syntax in "What a JSP Page Looks Like" on
page 1-2; now here is a top-level list of syntax categories and topics:

■ directives—These convey information regarding the JSP page as a whole.

■ scripting elements—These are Java coding elements such as declarations,
expressions, scriptlets, and comments.

■ objects and scopes—JSP objects can be created either explicitly or implicitly and
are accessible within a given scope, such as from anywhere in the JSP page or
the session.

■ actions—These create objects or affect the output stream in the JSP response (or
both).

This section introduces each category, including basic syntax and a few examples.
For more information, see the Sun Microsystems JavaServer Pages Specification,
Version 1.1.

Directives
Directives provide instruction to the JSP container regarding the entire JSP page.
This information is used in translating or executing the page. The basic syntax is as
follows:

<%@ directive attribute1="value1" attribute2="value2"... %>

The JSP 1.1 specification supports the following directives:

■ page—Use this directive to specify any of a number of page-dependent
attributes, such as the scripting language to use, a class to extend, a package to
import, an error page to use, or the JSP page output buffer size. For example:

<%@ page language="java" import="packages.mypackage" errorPage="boof.jsp" %>

Or, to set the JSP page output buffer size to 20kb (the default is 8kb):

<%@ page buffer="20kb" %>

Notes: There are XML-compatible alternatives to the syntax for
JSP directives, declarations, expressions, and scriptlets. See
"XML-Alternative Syntax" on page 5-9.
1-10 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements
Or, to unbuffer the page:

<%@ page buffer="none" %>

■ include—Use this directive to specify a resource that contains text or code to
be inserted into the JSP page when it is translated. Specify the path of the
resource relative to the URL specification of the JSP page.

Example:

<%@ include file="/jsp/userinfopage.jsp" %>

The include directive can specify either a page-relative or context-relative
location (see "Requesting a JSP Page" on page 1-8 for related discussion).

■ taglib—Use this directive to specify a library of custom JSP tags that will be
used in the JSP page. Vendors can extend JSP functionality with their own sets
of tags. This directive indicates the location of a tag library description file and a
prefix to distinguish use of tags from that library.

Example:

<%@ taglib uri="/oracustomtags" prefix="oracust" %>

Notes:

■ A JSP page using an error page must be buffered. Forwarding
to an error page clears the buffer (not outputting it to the
browser).

■ In OracleJSP, java is the default language setting. It is good
programming practice to set it explicitly, however.

Notes:

■ The include directive, referred to as a "static include", is
comparable in nature to the jsp:include action discussed
later in this chapter, but takes effect at JSP translation time
instead of request time. See "Static Includes Versus Dynamic
Includes" on page 4-12.

■ The include directive can be used only between pages in the
same servlet context.
 General Overview 1-11

Overview of JSP Syntax Elements
Later in the page, use the oracust prefix whenever you want to use one of the
tags in the library (presume this library includes a tag dbaseAccess):

<oracust:dbaseAccess>
...
</oracust:dbaseAccess>

As you can see, this example uses XML-style start-tag and end-tag syntax.

JSP tag libraries and tag library description files are introduced later in this
chapter, in "Tag Libraries" on page 1-23, and discussed in detail in Chapter 7,
"JSP Tag Libraries and the Oracle JML Tags".

Scripting Elements
JSP scripting elements include the following categories of snippets of Java code that
can appear in a JSP page:

■ declarations—These are statements declaring methods or member variables that
will be used in the JSP page.

A JSP declaration uses standard Java syntax within the <%!...%> declaration
tags to declare a member variable or method. This will result in a corresponding
declaration in the generated servlet code. For example:

<%! double f1=0.0; %>

This example declares a member variable, f1. In the servlet class code
generated by the JSP translator, f1 will be declared at the class top level.

■ expressions—These are Java expressions that are evaluated, converted into string
values as appropriate, and displayed where they are encountered on the page.

A JSP expression does not end in a semi-colon, and is contained within
<%=...%> tags.

Example:

<P> Today is <%= new java.util.Date() %>. Have a nice day! </P>

Note: Method variables, as opposed to member variables, are
declared within JSP scriptlets as described below.
1-12 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements
■ scriptlets—These are portions of Java code intermixed within the markup
language of the page.

A scriptlet, or code fragment, may consist of anything from a partial line to
multiple lines of Java code. You can use them within the HTML code of a JSP
page to set up conditional branches or a loop, for example.

A JSP scriptlet is contained within <%...%> scriptlet tags, using normal Java
syntax.

Example 1:

<% if (pageBean.getNewName().equals("")) { %>
 I don’t know you.
<% } else { %>
 Hello <%= pageBean.getNewName() %>.
<% } %>

Three one-line JSP scriptlets are intermixed with two lines of HTML (one of
which includes a JSP expression, which does not require a semi-colon). Note
that JSP syntax allows HTML code to be the code that is conditionally executed
within the if and else branches (inside the Java brackets set out in the
scriptlets).

The preceding example assumes the use of a JavaBean instance, pageBean.

Example 2:

<% if (pageBean.getNewName().equals("")) { %>
 I don’t know you.
 <% empmgr.unknownemployee();
} else { %>
 Hello <%= pageBean.getNewName() %>.
 <% empmgr.knownemployee();
} %>

This example adds more Java code to the scriptlets. It assumes the use of a
JavaBean instance, pageBean, and assumes that some object, empmgr, was
previously instantiated and has methods to execute appropriate functionality
for a known employee or an unknown employee.

Note: A JSP expression in a request-time attribute, such as in a
jsp:setProperty statement, need not be converted to a string
value.
 General Overview 1-13

Overview of JSP Syntax Elements
■ comments—These are developer comments embedded within the JSP code,
similar to comments embedded within any Java code.

Comments are contained within <%--...--%> tags. Unlike HTML comments,
these comments are not visible when a user views the page source.

Example:

<%-- Execute the following branch if no user name is entered. --%>

JSP Objects and Scopes
In this document, the term JSP object refers to a Java class instance declared within
or accessible to a JSP page. JSP objects can be either:

■ explicit—Explicit objects are declared and created within the code of your JSP
page, accessible to that page and other pages according to the scope setting
you choose.

or:

■ implicit—Implicit objects are created by the underlying JSP mechanism and
accessible to Java scriptlets or expressions in JSP pages according to the inherent
scope setting of the particular object type.

Scopes are discussed below, in "Object Scopes".

Note: Use a JSP scriptlet to declare method variables, as opposed
to member variables, as in the following example:

<% double f2=0.0; %>

This scriptlet declares a method variable, f2. In the servlet class
code generated by the JSP translator, f2 will be declared as a
variable within the service method of the servlet.

Member variables are declared in JSP declarations as described
above.

For a comparative discussion, see "Method Variable Declarations
Versus Member Variable Declarations" on page 4-18.
1-14 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements
Explicit Objects
Explicit objects are typically JavaBean instances declared and created in
jsp:useBean action statements. The jsp:useBean statement and other action
statements are described in "JSP Actions and the <jsp: > Tag Set" on page 1-18, but
an example is also shown here:

<jsp:useBean id="pageBean" class="mybeans.NameBean" scope="page" />

This statement defines an instance, pageBean, of the NameBean class that is in the
mybeans package. The scope parameter is discussed in "Object Scopes" below.

You can also create objects within Java scriptlets or declarations, just as you would
create Java class instances in any Java program.

Object Scopes
Objects in a JSP page, whether explicit or implicit, are accessible within a particular
scope. In the case of explicit objects, such as a JavaBean instance created in a
jsp:useBean action statement, you can explicitly set the scope with the following
syntax (as in the example in the preceding section, "Explicit Objects"):

scope="scopevalue"

There are four possible scopes:

■ scope="page"—The object is accessible only from within the JSP page where
it was created.

Note that when the user refreshes the page while executing a JSP page, new
instances will be created of all page-scope objects.

■ scope="request"—The object is accessible from any JSP page servicing the
same HTTP request that is serviced by the JSP page that created the object.

■ scope="session"—The object is accessible from any JSP page sharing the
same HTTP session as the JSP page that created the object.

■ scope="application"—The object is accessible from any JSP page used in
the same Web application (within any single Java virtual machine) as the JSP
page that created the object.

Implicit Objects
JSP technology makes available to any JSP page a set of implicit objects. These are
Java class instances that are created automatically by the JSP mechanism and that
allow interaction with the underlying servlet environment.
 General Overview 1-15

Overview of JSP Syntax Elements
The following implicit objects are available. For information about methods
available with these objects, refer to the Sun Microsystems Javadoc for the noted
classes and interfaces at the following location:

http://java.sun.com/products/servlet/2.2/javadoc/index.html

■ page

This is an instance of the JSP page implementation class that was created when
the page was translated, and that implements the interface
javax.servlet.jsp.HttpJspPage; page is synonymous with this within
a JSP page.

■ request

This represents an HTTP request and is an instance of a class that implements
the javax.servlet.http.HttpServletRequest interface, which extends
the javax.servlet.ServletRequest interface.

■ response

This represents an HTTP response and is an instance of a class that implements
the javax.servlet.http.HttpServletResponse interface, which extends
the javax.servlet.ServletResponse interface.

The response and request objects for a particular request are associated
with each other.

■ pageContext

This represents the page context of a JSP page, which is provided for storage and
access of all page scope objects of a JSP page instance. A pageContext object
is an instance of the javax.servlet.jsp.PageContext class.

The pageContext object has page scope, making it accessible only to the JSP
page instance with which it is associated.

■ session

This represents an HTTP session and is an instance of the
javax.servlet.http.HttpSession class.

■ application

This represents the servlet context for the Web application and is an instance of
the javax.servlet.ServletContext class.

The application object is accessible from any JSP page instance running as
part of any instance of the application within a single JVM. (The programmer
1-16 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements
should be aware of the server architecture regarding use of JVMs. For example,
in the Oracle9i Servlet Engine architecture, each user runs in his or her own
JVM.)

■ out

This is an object that is used to write content to the output stream of a JSP page
instance. It is an instance of the javax.servlet.jsp.JspWriter class,
which extends the java.io.Writer class.

The out object is associated with the response object for a particular request.

■ config

This represents the servlet configuration for a JSP page and is an instance of a
class that implements the javax.servlet.ServletConfig interface.
Generally speaking, servlet containers use ServletConfig instances to
provide information to servlets during initialization. Part of this information is
the appropriate ServletContext instance.

■ exception (JSP error pages only)

This implicit object applies only to JSP error pages—these are pages to which
processing is forwarded when an exception is thrown from another JSP page;
they must have the page directive isErrorPage attribute set to true.

The implicit exception object is a java.lang.Exception instance that
represents the uncaught exception that was thrown from another JSP page and
that resulted in the current error page being invoked.

The exception object is accessible only from the JSP error page instance to
which processing was forwarded when the exception was encountered.

For an example of JSP error processing and use of the exception object, see
"JSP Runtime Error Processing" on page 3-18.

Using an Implicit Object
Any of the implicit objects discussed in the preceding section may be useful. The
following example uses the request object to retrieve and display the value of the
username parameter from the HTTP request:

<H3> Welcome <%= request.getParameter("username") %> ! <H3>
 General Overview 1-17

Overview of JSP Syntax Elements
JSP Actions and the <jsp: > Tag Set
JSP action elements result in some sort of action occurring while the JSP page is
being executed, such as instantiating a Java object and making it available to the
page. Such actions may include the following:

■ creating a JavaBean instance and accessing its properties

■ forwarding execution to another HTML page, JSP page, or servlet

■ including an external resource in the JSP page

Action elements use a set of standard JSP tags that begin with <jsp: syntax.
Although the tags described earlier in this chapter that begin with <% syntax are
sufficient to code a JSP page, the <jsp: tags provide additional functionality and
convenience.

Action elements also use syntax similar to that of XML statements, with similar
"begin" and "end" tags such as in the following example:

<jsp:sampletag attr1="value1" attr2="value2" ... attrN="valueN">
...body...
</jsp:sampletag>

Or, where there is no body, the action statement is terminated with an empty tag:

<jsp:sampletag attr1="value1", ..., attrN="valueN" />

The JSP specification includes the following standard action tags, which are
introduced and briefly discussed here:

■ jsp:useBean

The jsp:useBean action creates an instance of a specified JavaBean class,
gives the instance a specified name, and defines the scope within which it is
accessible (such as from anywhere within the current JSP page instance).

Example:

<jsp:useBean id="pageBean" class="mybeans.NameBean" scope="page" />

This example creates a page-scoped instance pageBean of the
mybeans.NameBean class. This instance is accessible only from the JSP page
instance that creates it.

■ jsp:setProperty

The jsp:setProperty action sets one or more bean properties. The bean
must have been previously specified in a useBean action. You can directly
1-18 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements
specify a value for a specified property, or take the value for a specified
property from an associated HTTP request parameter, or iterate through a series
of properties and values from the HTTP request parameters.

The following example sets the user property of the pageBean instance
(defined in the preceding useBean example) to a value of "Smith":

<jsp:setProperty name="pageBean" property="user" value="Smith" />

The following example sets the user property of the pageBean instance
according to the value set for a parameter called username in the HTTP
request:

<jsp:setProperty name="pageBean" property="user" param="username" />

Or, if the bean property and request parameter have the same name (user), you
can simply set the property as follows:

<jsp:setProperty name="pageBean" property="user" />

The following example results in iteration over the HTTP request parameters,
matching bean property names with request parameter names and setting bean
property values according to the corresponding request parameter values:

<jsp:setProperty name="pageBean" property="*" />

■ jsp:getProperty

The jsp:getProperty action reads a bean property value, converts it to a
Java string, and places the string value into the implicit out object so that it can
be displayed as output. The bean must have been previously specified in a
jsp:useBean action. For the string conversion, primitive types are converted

Important: For property="*", the JSP 1.1 specification does not
stipulate the order in which properties are set. If order matters, and
if you want to ensure that your JSP page is portable, you should use
a separate setProperty statement for each property.

Also, if you use separate setProperty statements, then the
OracleJSP translator can generate the corresponding setXXX()
methods directly. In this case, introspection only occurs during
translation. There will be no need to introspect the bean during
runtime, which would be somewhat more costly.
 General Overview 1-19

Overview of JSP Syntax Elements
directly and object types are converted using the toString() method
specified in the java.lang.Object class.

The following example puts the value of the user property of the pageBean
bean into the out object:

<jsp:getProperty name="pageBean" property="user" />

■ jsp:param

You can use the jsp:param action in conjunction with jsp:include,
jsp:forward, or jsp:plugin actions (described below).

For jsp:forward and jsp:include statements, a jsp:param action
optionally provides key/value pairs for parameter values in the HTTP request
object. New parameters and values specified with this action are added to the
request object, with new values taking precedence over old.

The following example sets the request object parameter username to a value
of Smith:

<jsp:param name="username" value="Smith" />

■ jsp:include

The jsp:include action inserts additional static or dynamic resources into the
page at request time as the page is displayed. Specify the resource with a
relative URL (either page-relative or application-relative).

As of the Sun Microsystems JavaServer Pages Specification, Version 1.1, you must
set flush to true, which results in the buffer being flushed to the browser
when a jsp:include action is executed. (The flush attribute is mandatory,
but a setting of false is currently invalid.)

You can also have an action body with jsp:param settings, as shown in the
second example.

Examples:

<jsp:include page="/templates/userinfopage.jsp" flush="true" />

Note: The jsp:param tag is not supported for jsp:include or
jsp:forward in the JSP 1.0 specification.
1-20 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements
or:

<jsp:include page="/templates/userinfopage.jsp" flush="true" >
 <jsp:param name="username" value="Smith" />
 <jsp:param name="userempno" value="9876" />
</jsp:include>

Note that the following syntax would work as an alternative to the preceding
example:

<jsp:include page="/templates/userinfopage.jsp?username=Smith&userempno=9876" flush="true" />

■ jsp:forward

The jsp:forward action effectively terminates execution of the current page,
discards its output, and dispatches a new page—either an HTML page, a JSP
page, or a servlet.

The JSP page must be buffered to use a jsp:forward action; you cannot set
buffer="none". The action will clear the buffer, not outputting contents to the
browser.

As with jsp:include, you can also have an action body with jsp:param
settings, as shown in the second example.

Examples:

<jsp:forward page="/templates/userinfopage.jsp" />

or:

<jsp:forward page="/templates/userinfopage.jsp" >
 <jsp:param name="username" value="Smith" />
 <jsp:param name="userempno" value="9876" />
</jsp:forward>

Notes:

■ The jsp:include action, known as a "dynamic include", is
similar in nature to the include directive discussed earlier in
this chapter, but takes effect at request time instead of
translation time. See "Static Includes Versus Dynamic Includes"
on page 4-12.

■ The jsp:include action can be used only between pages in
the same servlet context.
 General Overview 1-21

Overview of JSP Syntax Elements
■ jsp:plugin

The jsp:plugin action results in the execution of a specified applet or
JavaBean in the client browser, preceded by a download of Java plugin software
if necessary.

Specify configuration information, such as the applet to run and the codebase,
using jsp:plugin attributes. The JSP container might provide a default URL
for the download, but you can also specify attribute nspluginurl="url" (for
a Netscape browser) or iepluginurl="url" (for an Internet Explorer
browser).

Use nested jsp:param actions within <jsp:params> and </jsp:params>
start and end tags to specify parameters to the applet or JavaBean. (Note that
these jsp:params start and end tags are not necessary when using
jsp:param in a jsp:include or jsp:forward action.)

Use <jsp:fallback> and </jsp:fallback> start and end tags to delimit
alternative text to execute if the plugin cannot run.

Notes:

■ The difference between the jsp:forward examples here and
the jsp:include examples earlier is that the jsp:include
examples insert userinfopage.jsp within the output of the
current page; the jsp:forward examples stop executing the
current page and display userinfopage.jsp instead.

■ The jsp:forward action can be used only between pages in
the same servlet context.

■ The jsp:forward action results in the original request
object being forwarded to the target page. As an alternative, if
you do not want the request object forwarded, you can use
the sendRedirect(String) method specified in the
standard javax.servlet.http.HttpServletResponse
interface. This sends a temporary redirect response to the client
using the specified redirect-location URL. You can specify a
relative URL; the servlet container will convert the relative URL
to an absolute URL.
1-22 JavaServer Pages Developer’s Guide and Reference

Overview of JSP Syntax Elements
The following example, from the Sun Microsystems JavaServer Pages Specification,
Version 1.1, shows the use of an applet plugin:

<jsp:plugin type=applet code="Molecule.class" codebase="/html" >
 <jsp:params>
 <jsp:param name="molecule" value="molecules/benzene.mol" />
 </jsp:params>
 <jsp:fallback>
 <p> Unable to start the plugin. </p>
 </jsp:fallback>
</jsp:plugin>

Many additional parameters—such as ARCHIVE, HEIGHT, NAME, TITLE, and
WIDTH—are allowed in the jsp:plugin action statement as well. Use of these
parameters is according to the general HTML specification.

Tag Libraries
In addition to the standard JSP tags discussed previously in this section, the JSP
specification lets vendors define their own tag libraries and also lets vendors
implement a framework allowing customers to define their own tag libraries.

A tag library defines a collection of custom tags and can be thought of as a JSP
sub-language. Developers can use tag libraries directly, in manually coding a JSP
page, but they might also be used automatically by Java development tools. A tag
library must be portable between different JSP container implementations.

Import a tag library into a JSP page using the taglib directive, introduced in
"Directives" on page 1-10.

Key concepts of standard JavaServer Pages support for JSP tag libraries include the
following topics:

■ tag handlers

A tag handler describes the semantics of the action that results from use of a
custom tag. A tag handler is an instance of a Java class that implements either
the Tag or BodyTag interface (depending on whether the tag uses a body
between a start tag and an end tag) in the standard
javax.servlet.jsp.tagext package.

■ scripting variables

Custom tag actions can create server-side objects available for use by the tag
itself or by other scripting elements such as scriptlets. This is accomplished by
creating or updating scripting variables.
 General Overview 1-23

Overview of JSP Syntax Elements
Details regarding scripting variables that a custom tag defines must be specified
in a subclass of the standard javax.servlet.jsp.tagext.TagExtraInfo
abstract class. This document refers to such a subclass as a tag-extra-info class.
The JSP container uses instances of these classes during translation.

■ tag library description files

A tag library description (TLD) file is an XML document that contains
information about a tag library and about individual tags of the library. The file
name of a TLD has the .tld extension.

A JSP container uses the TLD file in determining what action to take when it
encounters a tag from the library.

■ use of web.xml for tag libraries

The Sun Microsystems Java Servlet Specification, Version 2.2 describes a standard
deployment descriptor for servlets—the web.xml file. JSP applications can use
this file in specifying the location of a JSP tag library description file.

For JSP tag libraries, the web.xml file can include a taglib element and two
subelements: taglib-uri and taglib-location.

For information about these topics, see "Standard Tag Library Framework" on
page 7-2.

For information about the sample tag library provided with OracleJSP, see
"Overview of the JSP Markup Language (JML) Sample Tag Library" on page 7-20

For further information, see the Sun Microsystems JavaServer Pages Specification,
Version 1.1.
1-24 JavaServer Pages Developer’s Guide and Reference

 Overview of Oracle’s JSP Implemen
2

Overview of Oracle’s JSP Implementation

OracleJSP release 1.1.2.x is a complete implementation of the Sun Microsystems
JavaServer Pages Specification, Version 1.1.

This chapter introduces features of OracleJSP as well as discussing support for
OracleJSP in various environments, particularly the Oracle9i Servlet Engine (OSE).
OSE is the Oracle9i servlet container.

For an overview of standard JavaServer Pages features, see Chapter 1, "General
Overview".

The following topics are covered here:

■ Portability and Functionality Across Servlet Environments

■ Support for OracleJSP in Oracle Environments

■ Support for OracleJSP in Non-Oracle Environments

■ Overview of OracleJSP Programmatic Extensions

■ Summary of OracleJSP Releases and Feature Sets

■ OracleJSP Execution Models

■ Oracle JDeveloper Support for OracleJSP
tation 2-1

Portability and Functionality Across Servlet Environments
Portability and Functionality Across Servlet Environments
Oracle’s JavaServer Pages implementation is highly portable across server
platforms and servlet environments. It also supplies a framework for Web
applications in older servlet environments, where servlet context behavior was not
yet sufficiently defined.

OracleJSP Portability
OracleJSP can run on any servlet environment that complies with version 2.0 or
higher of the Sun Microsystems Java Servlet Specification. This is in contrast to most
JSP implementations, which require a servlet 2.1(b) or higher implementation. As
the next section explains, OracleJSP provides functionality equivalent to what is
lacking in older servlet environments.

Furthermore, the OracleJSP container is independent of the server environment and
its servlet implementation. This is in contrast to vendors who deliver their JSP
implementation as part of their servlet implementation instead of as a standalone
product.

This portability makes it much easier to run OracleJSP in both your development
environment and the target environment, as opposed to having to use a different
JSP implementation on your development system because of any server or servlet
platform limitations. There are usually benefits to developing on a system with the
same JSP container as the target server; but realistically speaking, there is usually
some variation between environments.

OracleJSP Extended Functionality for Servlet 2.0 Environments
Because of interdependence between servlet specifications and JSP functionality,
Sun Microsystems has tied versions of the JavaServer Pages Specification to versions
of the Java Servlet Specification. According to Sun, JSP 1.0 requires a servlet 2.1(b)
implementation, and JSP 1.1 requires a servlet 2.2 implementation.

The servlet 2.0 specification was limited in that it provided only a single servlet
context per Java virtual machine, instead of a servlet context for each application.
The servlet 2.1 specification allowed, but did not mandate, a separate servlet context
for each application. The servlet 2.1(b) and servlet 2.2 specifications mandated
separate servlet contexts. (For background information about servlets and servlet
contexts, see "Background on Servlets" on page B-2.)

The OracleJSP container, however, offers functionality that emulates the application
support provided with the servlet 2.1(b) specification. This allows a full application
2-2 JavaServer Pages Developer’s Guide and Reference

Portability and Functionality Across Servlet Environments
framework in a servlet 2.0 environment such as Apache/JServ. This includes
providing applications with distinct ServletContext and HttpSession objects.

This extended support is provided through a file, globals.jsa, that acts as a JSP
application marker, application and session event handler, and centralized location
for application-global declarations and directives. (For information, see "Overview
of globals.jsa Functionality" on page 5-38.)

Because of this extended functionality, OracleJSP is not limited by the underlying
servlet environment.
 Overview of Oracle’s JSP Implementation 2-3

Support for OracleJSP in Oracle Environments
Support for OracleJSP in Oracle Environments
This section provides brief overviews of Oracle environments that support and
provide OracleJSP, covering the following topics:

■ Overview of the Oracle9i Servlet Engine (OSE)

■ Overview of the Oracle9i Application Server

■ Role of the Oracle HTTP Server, Powered by Apache

■ Oracle Web Application Data-Access Strategies

■ Overview of Other Oracle JSP Environments

The Oracle9i Servlet Engine, the servlet container in Oracle9i, supports a JSP
pre-translation model. JSP pages are translated into servlets prior to or during
deployment to Oracle9i.

For the other Oracle environments, the OracleJSP container supports the typical
on-demand translation model, typically translating the pages at runtime. OracleJSP
is designed to run effectively in either situation and provide consistent semantics
regardless of your choice of server.

Overview of the Oracle9i Servlet Engine (OSE)
If your JSP pages are intended to access an Oracle9i database, you have the option
of executing them in the Oracle9i Servlet Engine (OSE), either inside the Oracle9i
database or inside the Oracle9i Application Server middle-tier database cache. OSE,
which is included with Oracle9i, incorporates the OracleJSP container. This reduces
communication overhead compared to JSP execution in a middle tier. Access to the
database is through the Oracle JDBC server-side internal driver.

The OSE execution model requires the developer to take some special steps to
deploy the JSP pages to Oracle9i. This includes pre-translating the pages, loading
them into Oracle9i, and "publishing" them to make them available for execution.

During installation of Oracle9i, the Oracle HTTP Server powered by Apache is set
as the default Web server, acting as a front-end for JSP and servlet applications
running in OSE. Refer to your installation instructions if you want to change this
setting.

In Oracle9i database release 9.0.1, the Oracle9i Servlet Engine supports the servlet
2.2 and JSP 1.1 specifications, incorporating OracleJSP release 1.1.2.3.
2-4 JavaServer Pages Developer’s Guide and Reference

Support for OracleJSP in Oracle Environments
Overview of the Oracle9i Application Server
The Oracle9i Application Server is a scalable, secure, middle-tier application server.
It can be used to deliver Web content, host Web applications, connect to back-office
applications, and make these services accessible to any client browser. Users can
access information, perform business analysis, and run business applications on the
Internet or corporate intranets or extranets.

To deliver this range of content and services, Oracle9i Application Server release
1.0.x incorporates the Oracle HTTP Server (powered by Apache), a middle-tier
database cache for read-only data, Oracle Forms Services and Oracle Reports
Services to support Oracle Forms-based applications and reports generation, and
various business logic runtime environments that support Enterprise JavaBeans,
stored procedures, and Oracle Business Components for Java.

For database access, the Oracle HTTP Server can route HTTP requests to servlets or
JSP pages running in either of the following scenarios:

■ in the Apache/JServ environment (routing is through the Apache mod_jserv
module)

In this scenario, database access is through client-side/middle-tier JDBC drivers
(using either JDBC or SQLJ code).

■ in the OSE environment in the database or middle-tier database cache (routing
is through the Apache mod_ose module)

In this scenario, database access is through the JDBC server-side internal driver
(using either JDBC or SQLJ code).

The Oracle9i Application Server 1.0.x releases include the Apache/JServ servlet
environment, supporting the servlet 2.0 specification, and provide JSP
environments as follows:

■ 1.0.2.x and 1.0.1.x releases include OracleJSP release 1.1.x, supporting the JSP 1.1
specification.

■ Release 1.0.0 includes OracleJSP release 1.0.0.6.1, supporting the JSP 1.0
specification.

See the Oracle9i Application Server Documentation Library for more information about
the Oracle9i Application Server.
 Overview of Oracle’s JSP Implementation 2-5

Support for OracleJSP in Oracle Environments
Role of the Oracle HTTP Server, Powered by Apache
Oracle HTTP Server, powered by the Apache Web server, is included with the
Oracle9i Application Server and Oracle9i database as the HTTP entry point for Web
applications accessing the database. Database access is through Apache add-on
modules.

The remainder of this section covers the following topics:

■ Use of Apache Mods

■ More About mod_ose

■ More About mod_jserv

Use of Apache Mods
In using the Oracle HTTP Server, powered by Apache, dynamic content is delivered
through various Apache mod components provided either by Apache or by other
vendors such as Oracle. (Static content is typically delivered from the file system.)
An Apache mod is typically a module of C code, running in the Apache address
space, that passes requests to a particular mod-specific processor. (The mod
software will have been written specifically for use with the particular processor.)

The following Apache mods are of interest to OracleJSP developers:

■ mod_ose is provided by Oracle for JSP pages and servlets that have been
deployed to Oracle9i and will be executed by the Oracle9i Servlet Engine inside
the database or middle-tier database cache address space.

■ mod_jserv is provided by Apache and can be used in accessing Oracle9i data
from JSP pages or servlets running in the Apache/JServ servlet environment in
a middle-tier JVM.

Note: Future releases of Oracle9i Application Server may replace
the Apache/JServ environment with an alternative servlet
environment.

Note: When using OSE, it is advisable to use it as a servlet
container in conjunction with the Oracle HTTP Server, particularly
for applications with static HTML.
2-6 JavaServer Pages Developer’s Guide and Reference

Support for OracleJSP in Oracle Environments
More About mod_ose
The mod_ose component, supplied by Oracle, delegates HTTP requests to JSP
pages or servlets running in OSE inside the database or middle-tier database cache.
It communicates with OSE using HTTP over the Oracle Net protocol and can
handle either stateless or stateful requests. Each virtual domain configured in the
Oracle HTTP Server is associated with a database connection string (an Oracle Net
name-value list) that indicates where to make a connection to execute the request.
The connection uses Oracle Net directly, providing the same load balancing and hot
backup functionality as OCI.

If an application running in an Oracle9i Application Server framework uses
mod_ose, then the application server’s Apache/JServ servlet 2.0 environment is not
involved. The Oracle9i Servlet Engine’s own servlet 2.2 environment is used
instead.

JSP applications and servlets running in OSE in the database or middle-tier
database cache use the Oracle JDBC server-side internal driver for rapid database
access. For an overview of OSE, see "Overview of the Oracle9i Servlet Engine (OSE)"
on page 2-4.

You can use the Oracle9i session shell exportwebdomain command to configure
mod_ose to find published servlets and JSP pages in the database.

See the Oracle9i Servlet Engine Developer’s Guide for more information about
mod_ose and for information about the exportwebdomain command.

More About mod_jserv
The mod_jserv component, supplied by Apache, delegates HTTP requests to JSP
pages or servlets running in the Apache/JServ servlet container in a middle-tier
JVM. Oracle9i Application Server release 1.0.x includes the Apache/JServ servlet

Notes:

■ For Oracle9i Application Server releases 1.0.0 and 1.0.1, you
cannot use the mod_ose/OSE scenario because those releases
of the database cache did not yet include the Oracle9i Servlet
Engine. This was resolved as of release 1.0.2.

■ Many additional Apache "mod" components are available for
use in an Apache environment, provided by Apache for general
use or by Oracle for Oracle-specific use, but they are not
relevant for JSP applications.
 Overview of Oracle’s JSP Implementation 2-7

Support for OracleJSP in Oracle Environments
container, which supports the servlet 2.0 specification, and either JDK 1.1.8 or 1.2.2.
The middle-tier environment may or may not be on the same physical host as the
back-end Oracle9i database.

Communication between mod_jserv and middle-tier JVMs uses a proprietary
Apache/JServ protocol over TCP/IP. The mod_jserv component can delegate
requests to multiple JVMs in a pool for load balancing.

JSP applications running in middle-tier JVMs use the Oracle JDBC OCI driver or
Thin driver to access the database.

Servlet 2.0 environments (as opposed to servlet 2.1 or 2.2 environments) have issues
that require special consideration. See "Considerations for Apache/JServ Servlet
Environments" on page 4-38.

Refer to Apache documentation for mod_jserv configuration information. (This
documentation is provided with Oracle9i.)

Oracle Web Application Data-Access Strategies
Developers who are targeting the Oracle9i database or middle-tier database cache
from JSP applications have the following options:

1. Run in the Apache/JServ servlet container through the Oracle HTTP Server,
using mod_jserv.

2. Run in the Oracle9i Servlet Engine in the database or middle-tier database cache
through the Oracle HTTP Server, using mod_ose.

Running in Apache/JServ, because it uses a standard JVM (currently JDK 1.2.2 or
1.1.8), is necessary if you want to use the JDBC OCI driver or if the application
requires Java features not available in the Oracle JVM (JNI, for example).

However, running in Apache/JServ has the disadvantage of requiring a pool of
multiple JVMs that must be configured manually. (For more information, refer to
the Apache mod_jserv documentation provided with Oracle9i.)

Note: When you use the Oracle HTTP Server, be aware that the
Apache/JServ servlet container has a different default doc root for
static files than the Oracle9i Servlet Engine has. See "Doc Root for
Oracle9i Application Server Versus Oracle9i Servlet Engine" on
page 6-73.
2-8 JavaServer Pages Developer’s Guide and Reference

Support for OracleJSP in Oracle Environments
In using the Oracle9i Servlet Engine, access through the Oracle HTTP Server and
mod_ose is the typical scenario and is recommended, although employing OSE
directly as the Web server (either in the database or database cache) is feasible.

In particular, Oracle HTTP Server and mod_ose can handle the following situations
that OSE by itself cannot:

■ database access through a firewall certified with Oracle Net

■ implementation of a fault-tolerant system using multiple databases

■ database access through port 80

This is typically not possible when using OSE as a Web server directly. In a
UNIX environment, for example, port 80 is accessible only from the root
account, and end-users do not have root access.

■ connection pooling for stateless applications so that session startup overhead is
mostly avoided

The default installation of Oracle9i uses the Oracle HTTP Server as the front-end
Web server for JSP pages and servlets that run in OSE.

Overview of Other Oracle JSP Environments
In addition to the Oracle9i Servlet Engine and Oracle9i Application Server, the
following Oracle environments support OracleJSP:

■ Oracle Application Server

■ Oracle Web-to-go

■ Oracle JDeveloper

Oracle Application Server
Oracle Application Server (OAS) preceded the Oracle Internet Application Server,
which is now known as the Oracle9i Application Server. OAS is a scalable,
standards-based middle-tier environment for application logic, offering database
integration in supporting business applications in both corporate and e-business
environments.

New customers will presumably use the Oracle9i Application Server, discussed
previously, instead of OAS. For existing OAS customers, however, Oracle
Application Server release 4.0.8.2 includes a servlet 2.1 environment and OracleJSP
release 1.0.0.6.0 (supporting the JSP 1.0 specification).
 Overview of Oracle’s JSP Implementation 2-9

Support for OracleJSP in Oracle Environments
Refer to the Oracle Application Server Developer’s Guide: JServlet and JSP Applications
for more information.

Oracle Web-to-go
Oracle Web-to-go, a component of Oracle9i Lite, consists of a collection of modules
and services that facilitate development, deployment, and management of mobile
Web applications.

Web-to-go lets developers extend Web-based applications to intermittently
connected users without coding the infrastructure required for replication,
synchronization, and other networking issues. Unlike traditional mobile computing
technologies, which rely on custom or proprietary application-programming
interfaces (APIs), Web-to-go uses industry-standard Internet technologies.

Web-to-go release 1.3 provides a servlet 2.1 environment and OracleJSP release
1.0.0.6.1 (supporting the JSP 1.0 specification). Future releases will offer a servlet 2.2
environment and OracleJSP 1.1.x.

Refer to the Oracle Web-to-go Implementation Guide for more information.

Oracle JDeveloper
JDeveloper is a Java development tool, rather than a "platform" like the other Oracle
products listed here. It incorporates a Web listener, servlet runner, and the OracleJSP
container for execution and testing.

See "Oracle JDeveloper Support for OracleJSP" on page 2-23 for more information.

JDeveloper version 3.1 provides a servlet 2.1 environment and OracleJSP release
1.0.0.6.1 (supporting the JSP 1.0 specification). Future releases will offer a servlet 2.2
environment and OracleJSP 1.1.x.
2-10 JavaServer Pages Developer’s Guide and Reference

Support for OracleJSP in Non-Oracle Environments
Support for OracleJSP in Non-Oracle Environments
You should be able to install and run the OracleJSP container on any server
environment supporting servlet specification 2.0 or higher. In particular, OracleJSP
has been tested in the following environments as of release 1.1.2.x:

■ Apache Software Foundation Apache/JServ 1.1

This is a Web server and servlet 2.0 environment without a JSP environment. To
run JSP pages, you must install a JSP environment on top of it.

■ Sun Microsystems JSWDK 1.0 (JavaServer Web Developer’s Kit)

This is a Web server with the servlet 2.1 and JavaServer Pages 1.0 reference
implementations. You can, however, install OracleJSP on top of the JSWDK
servlet environment to replace the original JSP environment.

■ Apache Software Foundation Tomcat 3.1

This cooperative effort between Sun Microsystems and the Apache Software
Foundation is a Web server with the servlet 2.2 and JavaServer Pages 1.1
reference implementations. You can, however, install OracleJSP on top of the
Tomcat servlet environment to replace the original JSP environment. You can
also run Tomcat in conjunction with the Apache Web server instead of using the
Tomcat Web server.
 Overview of Oracle’s JSP Implementation 2-11

Overview of OracleJSP Programmatic Extensions
Overview of OracleJSP Programmatic Extensions
This section is an overview of extended programming features supported by
OracleJSP.

OracleJSP provides the following extended functionality through custom tag
libraries and custom JavaBeans, all of which are portable to other JSP environments:

■ extended datatypes implemented as JavaBeans that can have a specified scope

■ integration with XML and XSL

■ data-access JavaBeans

■ the Oracle JSP Markup Language (JML) custom tag library, which reduces the
level of Java proficiency required for JSP development

■ a custom tag library for SQL functionality

OracleJSP also provides the following Oracle-specific extensions:

■ support for SQLJ, a standard syntax for embedding SQL statements directly
into Java code

■ extended globalization support

■ JspScopeListener for event handling

■ globals.jsa file for application support

Discussion of these topics is followed by a brief description of how OracleJSP pages
can interact with Oracle PL/SQL Server Pages.

Overview of Portable OracleJSP Extensions
The Oracle extensions discussed in this section are implemented either through the
OracleJSP JML sample tag library or through custom JavaBeans. They are portable
to other JSP environments.

OracleJSP Extended Datatypes
JSP pages generally rely on core Java datatypes in representing scalar values, but
neither of the following type categories is fully suitable for use in JSP pages:

■ primitive types such as int, float, and double

Values of these types cannot have a specified scope—they cannot be stored in a
JSP scope object (for page, request, session, or application scope),
because only objects can be stored in a scope object.
2-12 JavaServer Pages Developer’s Guide and Reference

Overview of OracleJSP Programmatic Extensions
■ wrapper classes in the standard java.lang package, such as Integer, Float,
and Double

Values of these types are objects, so they can theoretically be stored in a JSP
scope object. However, they cannot be declared in a jsp:useBean action,
because the wrapper classes do not follow the JavaBean model and do not
provide a zero-argument constructor.

Additionally, instances of the wrapper classes are immutable. To change a
value, you must create a new instance and assign it appropriately.

To work around these limitations, OracleJSP provides the JmlBoolean,
JmlNumber, JmlFPNumber, and JmlString JavaBean classes in package
oracle.jsp.jml to wrap the most common Java datatypes.

See "JML Extended Datatypes" on page 5-2 for more information.

Integration with XML and XSL
You can use JSP syntax to generate any text-based MIME type, not just HTML code.
In particular, you can dynamically create XML output. When you use JSP pages to
generate an XML document, however, you often want a stylesheet applied to the
XML data before it is sent to the client. This is difficult in JavaServer Pages
technology, because the standard output stream used for a JSP page is written
directly back through the server.

OracleJSP provides special tags in its sample JML tag library to specify that all or
part of a JSP page should be transformed through an XSL stylesheet before it is
output. You can use this JML tag multiple times in a single JSP page if you want to
specify different style sheets for different portions of the page. Note that the JML tag
library is portable to other JSP environments.

In addition, the OracleJSP translator supports XML-alternative syntax as specified
in the Sun Microsystems JavaServer Pages Specification, Version 1.1.

See "OracleJSP Support for XML and XSL" on page 5-9 for more information.

Custom Data-Access JavaBeans
OracleJSP supplies a set of custom JavaBeans for use in accessing the Oracle9i
database or middle-tier database cache. The following beans are provided in the
oracle.jsp.dbutil package:

■ ConnBean opens a simple database connection.
 Overview of Oracle’s JSP Implementation 2-13

Overview of OracleJSP Programmatic Extensions
■ ConnCacheBean uses Oracle’s connection caching implementation for
database connections.

■ DBBean executes a database query.

■ CursorBean provides general DML support for UPDATE, INSERT, and
DELETE statements, as well as queries.

See "Oracle Data-Access JavaBeans" on page 5-13 for more information.

OracleJSP SQL Custom Tag Library
OracleJSP provides a custom tag library for SQL functionality. The following tags
are provided:

■ dbOpen—Open a database connection.

■ dbClose—Close a database connection.

■ dbQuery—Execute a query.

■ dbCloseQuery—Close the cursor for a query.

■ dbNextRow—Move to the next row of the result set.

■ dbExecute—Execute any SQL DML or DDL statement.

See "OracleJSP Tag Library for SQL" on page 5-24 for more information.

Oracle JSP Markup Language (JML) Custom Tag Library
Although the Sun Microsystems JavaServer Pages Specification, Version 1.1 supports
scripting languages other than Java, Java is the primary language used. Even
though JavaServer Pages technology is designed to separate the dynamic/Java
development effort from the static/HTML development effort, it is no doubt still a
hindrance if the Web developer does not know any Java, especially in small
development groups where no Java experts are available.

OracleJSP provides custom tags as an alternative—the JSP Markup Language (JML).
The Oracle JML sample tag library provides an additional set of JSP tags so that you
can script your JSP pages without using Java statements. JML provides tags for
variable declarations, control flow, conditional branches, iterative loops, parameter
settings, and calls to objects. The JML tag library also supports XML functionality,
as noted previously.

The following example shows use of the jml:for tag, repeatedly printing "Hello
World" in progressively smaller headings (H1, H2, H3, H4, H5):

<jml:for id="i" from="<%= 1 %>" to="<%= 5 %>" >
2-14 JavaServer Pages Developer’s Guide and Reference

Overview of OracleJSP Programmatic Extensions
 <H<%=i%>>
 Hello World!
 </H<<%=i%>>
</jml:for>

For more information, see "Overview of the JSP Markup Language (JML) Sample
Tag Library" on page 7-20.

Overview of Oracle-Specific Extensions
The OracleJSP extensions listed in this section are not portable to other JSP
environments.

SQLJ Support in OracleJSP
Dynamic server pages commonly include data extracted from databases; however,
JavaServer Pages technology does not offer built-in support to facilitate database
access. JSP developers typically must rely on the standard Java Database
Connectivity (JDBC) API or a custom set of database JavaBeans.

SQLJ is a standard syntax for embedding static SQL instructions directly in Java
code, greatly simplifying database-access programming. OracleJSP and the
OracleJSP translator support SQLJ programming in JSP scriptlets.

SQLJ statements are indicated by the #sql token. You can trigger the OracleJSP
translator to invoke the Oracle SQLJ translator by using the file name extension
.sqljsp for the JSP source code file.

For more information, see "OracleJSP Support for Oracle SQLJ" on page 5-34.

Extended Globalization Support in OracleJSP
OracleJSP provides extended globalization support for servlet environments that
cannot encode multibyte request parameters and bean property settings.

For such environments, OracleJSP offers the translate_params configuration
parameter, which can be enabled to direct OracleJSP to override the servlet
container and do the encoding itself.

Note: OracleJSP versions preceding the JSP 1.1 specification used
an Oracle-specific compile-time implementation of the JML tag
library. This implementation is still supported as an alternative to
the standard runtime implementation. For information, see
Appendix C, "Compile-Time JML Tag Support".
 Overview of Oracle’s JSP Implementation 2-15

Overview of OracleJSP Programmatic Extensions
For more information, see "OracleJSP Extended Support for Multibyte Parameter
Encoding" on page 8-5.

JspScopeListener for Event Handling
OracleJSP provides the JspScopeListener interface for lifecycle management of
Java objects of various scopes within a JSP application.

Standard servlet and JSP event-handling is provided through the
javax.servlet.http.HttpSessionBindingListener interface, but this
handles session-based events only. The Oracle JspScopeListener can handle
page-based, request-based, and application-based events as well.

For more information, see "OracleJSP Event Handling—JspScopeListener" on
page 5-33.

globals.jsa File for Application Support (Servlet 2.0)
For servlet 2.0 environments, where servlet contexts are not fully defined, OracleJSP
defines a file, globals.jsa, to extend servlet application support.

Within any single Java virtual machine, there can be a globals.jsa file for each
application (or, equivalently, for each servlet context). This file supports the concept
of Web applications through use as an application location marker. Based on
globals.jsa functionality, the OracleJSP container can also mimic servlet context
and HTTP session behavior for servlet environments, where such behavior is not
sufficiently defined.

The globals.jsa file also provides a vehicle for global Java declarations and JSP
directives across all JSP pages of an application.

Use of OracleJSP with Oracle PL/SQL Server Pages
Oracle provides a product called PL/SQL Server Pages (PSP). PSP technology allows
embedded PL/SQL scriptlets and stored procedure calls within an HTML page,
offering development advantages similar to those offered by JSP technology;
namely, that coding the dynamic portion of the page and the static portion of the
page can be largely separate development efforts. An HTML expert can code the
static part of the page and a PL/SQL expert can code the dynamic part of the page.
The syntax used to distinguish PL/SQL scriptlets in a PSP page is identical to that
used to distinguish Java scriptlets in a JSP page.

The remainder of this section discusses support for JSP-PSP interaction, and
includes some background on PSP URLs.
2-16 JavaServer Pages Developer’s Guide and Reference

Overview of OracleJSP Programmatic Extensions
For general information about PL/SQL Server Pages, see the Oracle9i Application
Developer’s Guide - Fundamentals.

Supported Interaction between JSP Pages and PSP Pages
When an end-user runs a PSP application, PSP pages are translated into stored
procedures for execution by the embedded PL/SQL gateway in producing output
to the Web browser. The embedded PL/SQL gateway in Oracle9i executes in a
servlet wrapper, and JSP pages running in the Oracle9i Servlet Engine can interact
with PSP pages as follows (as of Oracle9i release 9.0.1):

■ You can dynamically forward to a PSP page from a JSP page (jsp:forward).

■ You cannot dynamically include a PSP page from a JSP page (jsp:include).

■ You cannot statically include a PSP page from a JSP page (the include directive
to include a file during translation).

■ You cannot forward to or include a JSP page from a PSP page.

For information about the embedded PL/SQL gateway, refer to the Oracle9i Servlet
Engine Developer’s Guide and to Using the PL/SQL Gateway in the Oracle Application
Server 9i Documentation Library.

PSP Page URLs
Each PSP page, when loaded and compiled in the database, becomes a PL/SQL
stored procedure. The name of the stored procedure for a PSP page is either
explicitly declared in the page, using <%@ plsql procedure="proc-name" %>
syntax, or is derived from the name of the PSP file.

Given the name of the PL/SQL stored procedure, the URL is determined according
to the following general syntax:

http://host[:port]/some-prefix/dad/[schema.]proc-name

In this syntax, <some-prefix> is plsql for the embedded PL/SQL module, and
<dad> is the database access descriptor to run the stored procedure.

For more information, see the Oracle9i Application Developer’s Guide - Fundamentals.

Note: The "dynamic include" restriction in the embedded PL/SQL
gateway applies to servlets in general, not just JSP pages.
Dynamically including a PSP page through the embedded PL/SQL
gateway using the request dispatcher is not currently functional.
 Overview of Oracle’s JSP Implementation 2-17

Summary of OracleJSP Releases and Feature Sets
Summary of OracleJSP Releases and Feature Sets
OracleJSP release 1.1.2.3, a complete implementation the JSP 1.1 specification, is
provided with Oracle9i database release 9.0.1.

Some other Oracle platforms supporting OracleJSP have not yet incorporated the
latest OracleJSP release, however—they integrate OracleJSP release 1.1.0.0.0 (also a
JSP 1.1 implementation) or 1.0.0.6.1 or 1.0.0.6.0 (JSP 1.0 implementations).

OracleJSP Releases Provided with Oracle Platforms
Table 2–1 summarizes which OracleJSP releases are provided with which Oracle
platform releases as of this writing.

The "OracleJSP Feature Notes" column refers to OracleJSP release 1.1.2.x features
documented in this manual that are limited in the OracleJSP release noted for the
particular Oracle platform, or have special significance for the platform. For more
information, see "OracleJSP Feature Notes for Previous Releases" on page 2-19.

Table 2–1 Oracle Platform Releases and OracleJSP Releases

Oracle Platform Servlet Environment OracleJSP Release
OracleJSP
 Feature Notes

Oracle9i Servlet
Engine, release 9.0.1

servlet 2.2 OracleJSP 1.1.2.3
(JSP 1.1)

n/a

Oracle9i Servlet
Engine, release 9.0.0

servlet 2.2 OracleJSP 1.1.2.0
(JSP 1.1)

n/a

Oracle Servlet
Engine (Oracle8i),
release 8.1.7

servlet 2.2 OracleJSP 1.1.0.0.0
(JSP 1.1)

config params

Oracle9i Application
Server, release 1.0.2

servlet 2.0
(Apache/JServ)

OracleJSP 1.1.0.0.0
(JSP 1.1)

config params

Oracle Internet
Application Server,
release 1.0.1

servlet 2.0
(Apache/JServ)

OracleJSP 1.1.0.0.0
(JSP 1.1)

config params

Oracle Internet
Application Server,
release 1.0.0

servlet 2.0
(Apache/JServ)

OracleJSP 1.0.0.6.0
(JSP 1.0)

globals.jsa
config params
JML restrictions

Oracle Application
Server, release 4.0.8.2

servlet 2.1 OracleJSP 1.0.0.6.0
(JSP 1.0)

config params
JML restrictions
2-18 JavaServer Pages Developer’s Guide and Reference

Summary of OracleJSP Releases and Feature Sets
It is possible to download, incorporate, and use more recent OracleJSP versions
with the above Oracle platforms; the OracleJSP versions documented are the
versions that are supplied as part of the product.

To verify the OracleJSP release being used in a particular environment, retrieve the
release number from the implicit application object in a JSP page, as follows:

<%= application.getAttribute("oracle.jsp.versionNumber") %>

OracleJSP Feature Notes for Previous Releases
The following points describe the significance of the "OracleJSP Feature Notes"
column in Table 2–1 above, regarding previous OracleJSP releases.

■ The servlet 2.0 specification did not provide a complete framework for Web
applications. For servlet 2.0 environments such as Apache/JServ and Oracle9i
Application Server (which uses Apache/JServ), all releases of OracleJSP offer
extensions through the globals.jsa mechanism to support a more complete
application framework. See "OracleJSP Application and Session Support for
Servlet 2.0" on page 5-38 for more information.

■ Some OracleJSP configuration parameters that are supported in release 1.1.2.x
were not yet supported in previous releases. See "Configuration Parameters
Summary Table" on page A-15.

■ Release 1.0.0.6.x of OracleJSP complied with the JSP 1.0 specification, not the
JSP 1.1 specification, so could not support the JSP 1.1 custom tag library
mechanism. As a result, these OracleJSP releases supported JML tags through
an Oracle-specific compile-time implementation, using extensions to the
OracleJSP translator.

Oracle Web-to-go,
release 1.3

servlet 2.1 OracleJSP 1.0.0.6.1
(JSP 1.0)

config params
JML restrictions

Oracle JDeveloper,
release 3.2

servlet 2.1 OracleJSP 1.1.0.0.0
(JSP 1.1)

config params

Oracle JDeveloper,
release 3.1

servlet 2.1 OracleJSP 1.0.0.6.1
(JSP 1.0)

config params
JML restrictions

Table 2–1 Oracle Platform Releases and OracleJSP Releases (Cont.)

Oracle Platform Servlet Environment OracleJSP Release
OracleJSP
 Feature Notes
 Overview of Oracle’s JSP Implementation 2-19

Summary of OracleJSP Releases and Feature Sets
Use of JML in OracleJSP release 1.0.0.6.x requires a taglib directive (as
specified for JSP 1.1 and supported by OracleJSP 1.1.x.x), but the directive must
specify the class that contains the library, as follows:

<%@ taglib uri="oracle.jsp.parse.OpenJspRegisterLib" prefix="jml" %>

By contrast, when using a JSP implementation that complies with the JSP 1.1
specification, such as OracleJSP 1.1.2.x or 1.1.0.0.0, the taglib directive
specifies the tag library description file (in a .tld file or .jar file), as follows:

<%@ taglib uri="/WEB-INF/tlds/jmltags.tld" prefix="jml" %>

For information about the JML compile-time implementation, see Appendix C,
"Compile-Time JML Tag Support".
2-20 JavaServer Pages Developer’s Guide and Reference

OracleJSP Execution Models
OracleJSP Execution Models
As mentioned earlier, you can use the OracleJSP framework in a variety of server
environments. OracleJSP offers two distinct execution models:

■ In environments other than the Oracle9i Servlet Engine, the OracleJSP container
typically translates pages on demand before triggering their execution, as is also
true with most other vendors’ JSP implementations.

■ In the Oracle9i Servlet Engine environment—for JSP pages running in the
Oracle9i database or middle-tier database cache—the developer translates the
pages in advance and loads them into Oracle9i as working servlets.
(Command-line tools are available to translate the pages, load them, and
"publish" them to make them available for execution. You can have the
translation occur either on the client or in the server.) When the end-user
requests the JSP page, it is executed directly, with no translation necessary.

On-Demand Translation Model
OracleJSP uses the typical on-demand translation model for all server environments
that support OracleJSP, other than the Oracle9i Servlet Engine. This includes using
OracleJSP with the Apache Web server with JServ, for example, as well as various
Oracle environments.

When a JSP page is requested from a Web server that incorporates the OracleJSP
container, the servlet oracle.jsp.JspServlet is instantiated and invoked
(assuming proper Web server configuration). This servlet can be thought of as the
front-end of the OracleJSP container.

JspServlet locates the JSP page, translates and compiles it if necessary (if the
page implementation class does not exist or has an earlier timestamp than the JSP
page source), and triggers its execution.

Note that the Web server must be properly configured to map the *.jsp file name
extension (in a URL) to JspServlet. The steps to accomplish this for
Apache/JServ, the Sun Microsystems JWSDK, and Tomcat are discussed in detail in
"Configuration of Web Server and Servlet Environment to Run OracleJSP" on
page A-7.
 Overview of Oracle’s JSP Implementation 2-21

OracleJSP Execution Models
Oracle9i Servlet Engine Pre-Translation Model
JSP pages intended to run in the Oracle9i Servlet Engine (OSE) are pre-translated
and deployed to Oracle9i as working servlets. OSE incorporates the OracleJSP
runtime.

Deployment Steps to Run JSP Pages in the Oracle9i Servlet Engine
Perform the following steps to deploy JSP pages into Oracle9i:

1. Pre-translate the JSP pages (typically including compilation). The page
implementation classes produced by the JSP translator are essentially working
servlets.

2. Load the translated JSP pages into Oracle9i.

3. Optionally "hotload" the generated page implementation classes.

4. "Publish" the JSP pages to make them accessible for execution.

Command-line tools are available to translate, load, and publish the pages. The
translator creates the page implementation class in a .java file and compiles it into
a .class file.

Hotloading can be enabled and accomplished through additional steps. This is a
feature that allows more efficient use of literal strings such as the generated HTML
tags in a page implementation class. See "Overview of Hotloaded Classes in
Oracle9i" on page 6-24.

Deployment to Oracle9i can be performed with the translation being done either
beforehand on the client or as part of the deployment. For more information about
these scenarios and the steps involved, see "Deployment to Oracle9i with
Server-Side Translation" on page 6-45 and "Deployment to Oracle9i with Client-Side
Translation" on page 6-59.

Oracle9i Servlet Engine JSP Container
The Oracle9i Servlet Engine incorporates its own OracleJSP container, which
consists of most of the overall OracleJSP container without the OracleJSP translator
(because any JSP page that runs in the OSE environment is pre-translated).

The OSE includes front-end JSP processing, with functionality similar to
JspServlet in the on-demand translation model.

The front-end component finds and executes JSP pages according to a servlet path
(often referred to as a "virtual path") entered in the Oracle9i JNDI name space
during publishing. You specify a servlet path name when you publish the JSP page.
2-22 JavaServer Pages Developer’s Guide and Reference

Oracle JDeveloper Support for OracleJSP
Oracle JDeveloper Support for OracleJSP
Visual Java programming tools are beginning to support JSP coding. In particular,
Oracle JDeveloper supports OracleJSP and includes the following features:

■ integration of the OracleJSP container to support the full application
development cycle—editing, debugging, and running JSP pages

■ debugging of deployed JSP pages

■ an extensive set of data-enabled and Web-enabled JavaBeans, known as
JDeveloper Web beans

■ the JSP Element Wizard, which offers a convenient way to add predefined Web
beans to a page

■ support for incorporating custom JavaBeans

■ a deployment option for JSP applications that rely on the JDeveloper Business
Components for Java (BC4J)

See "Deployment of JSP Pages with JDeveloper" on page 6-79 for more information
about JSP deployment support.

For debugging, JDeveloper can set breakpoints within JSP page source and can
follow calls from JSP pages into JavaBeans. This is much more convenient than
manual debugging techniques, such as adding print statements within the JSP page
to output state into the response stream (for viewing in your browser) or to the
server log (through the log() method of the implicit application object).

For information about JDeveloper, refer to their online help.
 Overview of Oracle’s JSP Implementation 2-23

Oracle JDeveloper Support for OracleJSP
2-24 JavaServer Pages Developer’s Guide and Reference

 B
3

Basics

This chapter discusses basic issues such as applications and sessions, JSP-servlet
interaction, resource management, and application roots and doc roots. This is
followed by a JSP "starter sample" for data access.

The following topics are included:

■ Preliminary Considerations

■ Application Root and Doc Root Functionality

■ Overview of JSP Applications and Sessions

■ JSP-Servlet Interaction

■ JSP Resource Management

■ JSP Runtime Error Processing

■ JSP Starter Sample for Data Access
asics 3-1

Preliminary Considerations
Preliminary Considerations
This section discusses a few issues to be aware of before you start developing. The
following topics are covered:

■ Installation and Configuration Overview

■ Development Environments Versus Deployment Environments

■ Client-Side Considerations

Installation and Configuration Overview
Installation and configuration, primarily for key non-Oracle environments, is
covered in Appendix A, "General Installation and Configuration".

For installation and configuration of Oracle environments that support OracleJSP,
consult the documentation for the particular Oracle product.

Within Oracle9i, the Oracle9i Servlet Engine (OSE) incorporates OracleJSP.

Development Environments Versus Deployment Environments
JSP developers targeting a non-Oracle environment, such as Apache/JServ, typically
develop in the same environment as the target environment. In this case, the
installation and configuration instructions in Appendix A apply to both the
development environment and the deployment environment, although some of the
configuration parameters are of interest only during development.

JSP developers targeting the Oracle9i Servlet Engine or some other Oracle
environment have at least two development options:

■ Use Oracle JDeveloper for development and deployment.

JDeveloper incorporates OracleJSP and a servlet container for use in testing
during development. It also incorporates features to help you deploy the
finished product to the target location.

See "Oracle JDeveloper Support for OracleJSP" on page 2-23 for an introduction
to OracleJSP support in JDeveloper. Refer to JDeveloper documentation for
installation and configuration instructions.

■ Develop and test in a non-Oracle environment such as Apache/JServ before
deploying to the target Oracle environment for final testing and end use.

In this case, the information in Appendix A is presumably of interest to you for
your development environment.
3-2 JavaServer Pages Developer’s Guide and Reference

Preliminary Considerations
After testing in the development environment, you can pre-translate the JSP
pages and deploy them to Oracle9i using command-line tools available with the
OracleJSP installation. The OracleJSP command-line translator has options that
are equivalent to relevant translation-time configuration parameters. For
information, see "The ojspc Pre-Translation Tool" on page 6-26 and "Deployment
to Oracle9i with Client-Side Translation" on page 6-59.

For information about installing and configuring any of the Oracle environments
that support OracleJSP, refer to the documentation for the particular product.

Client-Side Considerations
JSP pages will run with any standard browser supporting HTTP 1.0 or higher.

The JDK or other Java environment in the end-user’s Web browser is irrelevant,
because all the Java code in a JSP page is executed in the Web server or data server.
 Basics 3-3

Application Root and Doc Root Functionality
Application Root and Doc Root Functionality
This section provides an overview of application roots and doc roots, distinguishing
between servlet 2.2 functionality and servlet 2.0 functionality.

Application Roots in Servlet 2.2 Environments
As mentioned earlier, the servlet 2.2 specification provides for each application to
have its own servlet context. Each servlet context is associated with a directory path
in the server file system, which is the base path for modules of the application. This
is the application root. Each application has its own application root.

This is similar to how a Web server uses a doc root as the root location for HTML
pages and other files belonging to a Web application.

For an application in a servlet 2.2 environment, there is a one-to-one mapping
between the application root (for servlets and JSP pages) and the doc root (for static
files, such as HTML files)—they are essentially the same thing.

Note that a servlet URL has the following general form:

http://host[:port]/contextpath/servletpath

When a servlet context is created, a mapping is specified between the application
root and the context path portion of a URL.

For example, consider an application with the application root
/home/dir/mybankappdir, which is mapped to the context path mybank.
Further assume the application includes a servlet whose servlet path is
loginservlet. This servlet can be invoked as follows:

http://host[:port]/mybank/loginservlet

(The application root directory name itself is not visible to the end-user.)

To continue this example for an HTML page in this application, the following URL
points to the file /home/dir/mybankappdir/dir1/abc.html:

http://host[:port]/mybank/dir1/abc.html

For each servlet environment there is also a default servlet context. For this context,
the context path is simply "/", which is mapped to the default servlet context
application root.

For example, assume the application root for the default context is
/home/mydefaultdir, and a servlet with the servlet path myservlet uses the
3-4 JavaServer Pages Developer’s Guide and Reference

Application Root and Doc Root Functionality
default context. Its URL would be as follows (again, the application root directory
name itself is not visible to the user):

http://host[:port]/myservlet

(The default context is also used if there is no match for the context path specified in
a URL.)

Continuing this example for an HTML file, the following URL points to the file
/home/mydefaultdir/dir2/def.html:

http://host[:port]/dir2/def.html

OracleJSP Application Root Functionality in Servlet 2.0 Environments
Apache/JServ and other servlet 2.0 environments have no concept of application
roots, because there is only a single application environment. The Web server doc
root is effectively the application root.

For Apache, the doc root is typically some .../htdocs directory. In addition, it is
possible to specify "virtual" doc roots through alias settings in the httpd.conf
configuration file.

In a servlet 2.0 environment, OracleJSP offers the following functionality regarding
doc roots and application roots:

■ By default, OracleJSP uses the doc root as an application root.

■ Through the OracleJSP globals.jsa mechanism, you can designate a
directory under the doc root to serve as an application root for any given
application. This is accomplished by placing a globals.jsa file as a marker in
the desired directory. (See "Overview of globals.jsa Functionality" on page 5-38.)
 Basics 3-5

Overview of JSP Applications and Sessions
Overview of JSP Applications and Sessions
This section provides a brief overview of how JSP applications and sessions are
supported by OracleJSP.

General OracleJSP Application and Session Support
OracleJSP uses underlying servlet mechanisms for managing applications and
sessions. For information about these mechanisms, see "Servlet Sessions" on
page B-4 and "Servlet Contexts" on page B-6. For servlet 2.1 and servlet 2.2
environments, these underlying mechanisms are sufficient, providing a distinct
servlet context and session object for each JSP application.

Using the servlet mechanisms becomes problematic, however, in a servlet 2.0
environment such as Apache/JServ. The concept of a Web application was not well
defined in the servlet 2.0 specification, so in a servlet 2.0 environment there is only
one servlet context per servlet container. Additionally, there is one session object
only per servlet container. However, for Apache/JServ and other servlet 2.0
environments, OracleJSP provides extensions to optionally allow distinct servlet
contexts and session objects for each application. (This is unnecessary for Web
servers hosting just a single application.)

JSP Default Session Requests
Generally speaking, servlets do not request an HTTP session by default. However,
JSP page implementation classes do request an HTTP session by default. You can
override this by setting the session parameter to false in a JSP page directive,
as follows:

<%@ page ... session="false" %>

Note: For additional information relevant to Apache/JServ and
other servlet 2.0 environments, see "Considerations for
Apache/JServ Servlet Environments" on page 4-38 and "Overview
of globals.jsa Functionality" on page 5-38.
3-6 JavaServer Pages Developer’s Guide and Reference

JSP-Servlet Interaction
JSP-Servlet Interaction
Although coding JSP pages is convenient in many ways, some situations call for
servlets. One example is when you are outputting binary data, as discussed in
"Reasons to Avoid Binary Data in JSP Pages" on page 4-22.

Therefore, it is sometimes necessary to go back and forth between servlets and JSP
pages in an application. This section discusses how to accomplish this, covering the
following topics:

■ Invoking a Servlet from a JSP Page

■ Passing Data to a Servlet Invoked from a JSP Page

■ Invoking a JSP Page from a Servlet

■ Passing Data Between a JSP Page and a Servlet

■ JSP-Servlet Interaction Samples

Invoking a Servlet from a JSP Page
As when invoking one JSP page from another, you can invoke a servlet from a JSP
page through the jsp:include and jsp:forward action tags. (See "JSP Actions
and the <jsp: > Tag Set" on page 1-18.) Following is an example:

<jsp:include page="/servlet/MyServlet" flush="true" />

When this statement is encountered during page execution, the page buffer is
output to the browser and the servlet is executed. When the servlet has finished
executing, control is transferred back to the JSP page and the page continues
executing. This is the same functionality as for jsp:include actions from one JSP
page to another.

And as with jsp:forward actions from one JSP page to another, the following
statement would clear the page buffer, terminate the execution of the JSP page, and
execute the servlet:

<jsp:forward page="/servlet/MyServlet" />

Important: This discussion assumes a servlet 2.2 environment.
Appropriate reference is made to other sections of this document
for related considerations for Apache/JServ and other servlet 2.0
environments.
 Basics 3-7

JSP-Servlet Interaction
Passing Data to a Servlet Invoked from a JSP Page
When dynamically including or forwarding to a servlet from a JSP page, you can
use a jsp:param tag to pass data to the servlet (the same as when including or
forwarding to another JSP page).

A jsp:param tag is used within a jsp:include or jsp:forward tag. Consider
the following example:

<jsp:include page="/servlet/MyServlet" flush="true" >
 <jsp:param name="username" value="Smith" />
 <jsp:param name="userempno" value="9876" />
</jsp:include>

For more information about the jsp:param tag, see "JSP Actions and the <jsp: >
Tag Set" on page 1-18.

Alternatively, you can pass data between a JSP page and a servlet through an
appropriately scoped JavaBean or through attributes of the HTTP request object.
Using attributes of the request object is discussed later, in "Passing Data Between a
JSP Page and a Servlet" on page 3-9.

Invoking a JSP Page from a Servlet
You can invoke a JSP page from a servlet through functionality of the standard
javax.servlet.RequestDispatcher interface. Complete the following steps
in your code to use this mechanism:

1. Get a servlet context instance from the servlet instance:

ServletContext sc = this.getServletContext();

Important: You cannot include or forward to a servlet in
Apache/JServ or other servlet 2.0 environments; you would have to
write a JSP wrapper page instead. For information, see "Dynamic
Includes and Forwards in Apache/JServ" on page 4-39.

Note: The jsp:param tag was introduced in the JSP 1.1
specification.
3-8 JavaServer Pages Developer’s Guide and Reference

JSP-Servlet Interaction
2. Get a request dispatcher from the servlet context instance, specifying the
page-relative or application-relative path of the target JSP page as input to the
getRequestDispatcher() method:

RequestDispatcher rd = sc.getRequestDispatcher("/jsp/mypage.jsp");

Prior to or during this step, you can optionally make data available to the JSP
page through attributes of the HTTP request object. See "Passing Data Between
a JSP Page and a Servlet" below for information.

3. Invoke the include() or forward() method of the request dispatcher,
specifying the HTTP request and response objects as arguments. For example:

rd.include(request, response);

or:

rd.forward(request, response);

The functionality of these methods is similar to that of jsp:include and
jsp:forward actions. The include() method only temporarily transfers
control; execution returns to the invoking servlet afterward.

Note that the forward() method clears the output buffer.

Passing Data Between a JSP Page and a Servlet
The preceding section, "Invoking a JSP Page from a Servlet", notes that when you
invoke a JSP page from a servlet through the request dispatcher, you can optionally
pass data through the HTTP request object.

Notes:

■ The request and response objects would have been obtained
earlier using standard servlet functionality, such as the
doGet() method specified in the
javax.servlet.http.HttpServlet class.

■ This functionality was introduced in the servlet 2.1
specification.
 Basics 3-9

JSP-Servlet Interaction
You can accomplish this using either of the following approaches:

■ You can append a query string to the URL when you obtain the request
dispatcher, using "?" syntax with name=value pairs. For example:

RequestDispatcher rd =
 sc.getRequestDispatcher("/jsp/mypage.jsp?username=Smith");

In the target JSP page (or servlet), you can use the getParameter() method of
the implicit request object to obtain the value of a parameter set in this way.

■ You can use the setAttribute() method of the HTTP request object. For
example:

request.setAttribute("username", "Smith");
RequestDispatcher rd = sc.getRequestDispatcher("/jsp/mypage.jsp");

In the target JSP page (or servlet), you can use the getAttribute() method of
the implicit request object to obtain the value of a parameter set in this way.

JSP-Servlet Interaction Samples
This section provides a JSP page and a servlet that use functionality described in the
preceding sections. The JSP page Jsp2Servlet.jsp includes the servlet
MyServlet, which includes another JSP page, welcome.jsp.

Code for Jsp2Servlet.jsp

<HTML>
<HEAD> <TITLE> JSP Calling Servlet Demo </TITLE> </HEAD>
<BODY>

<!-- Forward processing to a servlet -->
<% request.setAttribute("empid", "1234"); %>

Notes:

■ This functionality was introduced in the servlet 2.1
specification. Be aware that the semantics are different between
the servlet 2.1 specification and the servlet 2.2 specification—in
a servlet 2.1 environment a given attribute can be set only once.

■ Mechanisms discussed in this section can be used instead of the
jsp:param tag to pass data from a JSP page to a servlet.
3-10 JavaServer Pages Developer’s Guide and Reference

JSP-Servlet Interaction
<jsp:include page="/servlet/MyServlet?user=Smith" flush="true"/>

</BODY>
</HTML>

Code for MyServlet.java

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.PrintWriter;
import java.io.IOException;

public class MyServlet extends HttpServlet {

 public void doGet (HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 PrintWriter out= response.getWriter();
 out.println("
User:" + request.getParameter("user"));
 out.println
 (", Employee number:" + request.getAttribute("empid") + "");
 this.getServletContext().getRequestDispatcher("/jsp/welcome.jsp").
 include(request, response);
 }
}

Code for welcome.jsp

<%---
 Copyright © 1999, Oracle Corporation. All rights reserved.
--%>

<HTML>
<HEAD> <TITLE> The Welcome JSP </TITLE> </HEAD>
<BODY>

<H3> Welcome! </H3>
<P> Today is <%= new java.util.Date() %>. Have a nice day! </P>
</BODY>
</HTML>
 Basics 3-11

JSP Resource Management
JSP Resource Management
The javax.servlet.http package offers a standard mechanism for managing
session resources. Additionally, Oracle provides extensions for managing
application, session, page, and request resources.

Standard Session Resource Management—HttpSessionBindingListener
A JSP page must appropriately manage resources acquired during its execution,
such as JDBC connection, statement, and result set objects. The standard
javax.servlet.http package provides the HttpSessionBindingListener
interface and HttpSessionBindingEvent class to manage session-scoped
resources. Through this mechanism, a session-scoped query bean could, for
example, acquire a database cursor when the bean is instantiated and close it when
the HTTP session is terminated. (The example in "JSP Starter Sample for Data
Access" on page 3-21 opens and closes the connection for each query, which adds
overhead.)

This section describes use of the HttpSessionBindingListener
valueBound() and valueUnbound() methods.

The valueBound() and valueUnbound() Methods
An object that implements the HttpSessionBindingListener interface can
implement a valueBound() method and a valueUnbound() method, each of
which takes an HttpSessionBindingEvent instance as input. These methods are
called by the servlet container—the valueBound() method when the object is
stored in the session; the valueUnbound() method when the object is removed
from the session or when the session times-out or becomes invalid. Usually, a
developer will use valueUnbound() to release resources held by the object (in the
example below, to release the database connection).

Note: The bean instance must register itself in the event
notification list of the HTTP session object, but the jsp:useBean
statement takes care of this automatically.
3-12 JavaServer Pages Developer’s Guide and Reference

JSP Resource Management
"JDBCQueryBean JavaBean Code" below provides a sample JavaBean that
implements HttpSessionBindingListener and a sample JSP page that calls the
bean.

JDBCQueryBean JavaBean Code
Following is the sample code for JDBCQueryBean, a JavaBean that implements the
HttpSessionBindingListener interface. (It uses the JDBC OCI driver for its
database connection; use an appropriate JDBC driver and connection string if you
want to run this example yourself.)

JDBCQueryBean gets a search condition through the HTML request (as described
in "The UseJDBCQueryBean JSP Page" on page 3-15), executes a dynamic query
based on the search condition, and outputs the result.

This class also implements a valueUnbound() method (as specified in the
HttpSessionBindingListener interface) that results in the database connection
being closed at the end of the session.

package mybeans;

import java.sql.*;
import javax.servlet.http.*;

public class JDBCQueryBean implements HttpSessionBindingListener
{
 String searchCond = "";
 String result = null;

 public void JDBCQueryBean() {
 }

 public synchronized String getResult() {
 if (result != null) return result;
 else return runQuery();
 }

Note: OracleJSP provides extensions for additional resource
management, allowing you to program JavaBeans to manage
page-scoped, request-scoped, or application-scoped resources as
well as session-scoped resources. See "OracleJSP Event
Handling—JspScopeListener" on page 5-33.
 Basics 3-13

JSP Resource Management
 public synchronized void setSearchCond(String cond) {
 result = null;
 this.searchCond = cond;
 }

 private Connection conn = null;

 private String runQuery() {
 StringBuffer sb = new StringBuffer();
 Statement stmt = null;
 ResultSet rset = null;
 try {
 if (conn == null) {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 conn = DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott", "tiger");

 }

 stmt = conn.createStatement();
 rset = stmt.executeQuery ("SELECT ename, sal FROM scott.emp "+
 (searchCond.equals("") ? "" : "WHERE " + searchCond));
 result = formatResult(rset);
 return result;

 } catch (SQLException e) {
 return ("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
 }
 finally {
 try {
 if (rset != null) rset.close();
 if (stmt != null) stmt.close();
 }
 catch (SQLException ignored) {}
 }
 }

 private String formatResult(ResultSet rset) throws SQLException {
 StringBuffer sb = new StringBuffer();
 if (!rset.next())
 sb.append("<P> No matching rows.<P>\n");
 else {
 sb.append("");
 do { sb.append("" + rset.getString(1) +
 " earns $ " + rset.getInt(2) + "\n");
3-14 JavaServer Pages Developer’s Guide and Reference

JSP Resource Management
 } while (rset.next());
 sb.append("");
 }
 return sb.toString();
 }

 public void valueBound(HttpSessionBindingEvent event) {
 // do nothing -- the session-scoped bean is already bound
 }

 public synchronized void valueUnbound(HttpSessionBindingEvent event) {
 try {
 if (conn != null) conn.close();
 }
 catch (SQLException ignored) {}
 }
}

The UseJDBCQueryBean JSP Page
The following JSP page uses the JDBCQueryBean JavaBean defined in
"JDBCQueryBean JavaBean Code" above, invoking the bean with session scope. It
uses JDBCQueryBean to display employee names that match a search condition
entered by the user.

JDBCQueryBean gets the search condition through the jsp:setProperty
command in this JSP page, which sets the searchCond property of the bean
according to the value of the searchCond request parameter input by the user
through the HTML form. (The HTML INPUT tag is what specifies that the search
condition entered in the form be named searchCond.)

<jsp:useBean id="queryBean" class="mybeans.JDBCQueryBean" scope="session" />
<jsp:setProperty name="queryBean" property="searchCond" />

<HTML>
<HEAD> <TITLE> The UseJDBCQueryBean JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">

<% String searchCondition = request.getParameter("searchCond");

Note: The preceding code serves as a sample only. This is not
necessarily an advisable way to handle database connection
pooling in a large-scale Web application.
 Basics 3-15

JSP Resource Management
 if (searchCondition != null) { %>
 <H3> Search results for : <I> <%= searchCondition %> </I> </H3>
 <%= queryBean.getResult() %>
 <HR>

<% } %>

Enter a search condition for the EMP table:

<FORM METHOD="get">
<INPUT TYPE="text" NAME="searchCond" VALUE="ename LIKE ’A%’ " SIZE="40">
<INPUT TYPE="submit" VALUE="Ask Oracle">
</FORM>

</BODY>
</HTML>

Following is sample input and output for this page:

Advantages of HttpSessionBindingListener
In the preceding example, an alternative to the HttpSessionBindingListener
mechanism would be to close the connection in a finalize() method in the
JavaBean. The finalize() method would be called when the bean is
garbage-collected after the session is closed. The HttpSessionBindingListener
interface, however, has more predictable behavior than a finalize() method.
3-16 JavaServer Pages Developer’s Guide and Reference

JSP Resource Management
Garbage collection frequency depends on the memory consumption pattern of the
application. By contrast, the valueUnbound() method of the
HttpSessionBindingListener interface is called reliably at session shutdown.

Overview of Oracle Extensions for Resource Management
Oracle provides the following extensions for managing application and session
resources as well as page and request resources:

■ JspScopeListener—for managing application, session, page, or request
resources

For information, see "OracleJSP Event Handling—JspScopeListener" on
page 5-33.

■ globals.jsa application and session events—for start and end events for
applications and sessions, typically in a servlet 2.0 environment such as
Apache/JServ

See "The globals.jsa Event Handlers" on page 5-43 for information.
 Basics 3-17

JSP Runtime Error Processing
JSP Runtime Error Processing
While a JSP page is executing and processing client requests, runtime errors can
occur either inside the page or outside the page (such as in a called JavaBean). This
section describes the JSP error processing mechanism and provides a simple
example.

Using JSP Error Pages
Any runtime error encountered during execution of a JSP page is handled using the
standard Java exception mechanism in one of two ways:

■ You can catch and handle exceptions in a Java scriptlet within the JSP page
itself, using standard Java exception-handling code.

■ Exceptions you do not catch in the JSP page will result in forwarding of the
request and uncaught exception to an error page. This is the preferred way to
handle JSP errors.

You can specify the URL of an error page by setting the errorPage parameter in a
page directive in the originating JSP page. (For an overview of JSP directives,
including the page directive, see "Directives" on page 1-10.)

In a servlet 2.2 environment, you can also specify a default error page in the
web.xml deployment descriptor with instructions such as the following:

<error-page>
 <error-code>404</error-code>
 <location>/error404.html</location>
</error-page>

(See the Sun Microsystems Java Servlet Specification, Version 2.2 for more information
about default error pages.)

An error page must have a page directive setting the isErrorPage parameter to
true.

The exception object describing the error is a java.lang.Exception instance that
is accessible in the error page through the implicit exception object.

Only an error page can access the implicit exception object. (For information
about JSP implicit objects, including the exception object, see "Implicit Objects"
on page 1-15.)

See "JSP Error Page Example" below for an example of error page usage.
3-18 JavaServer Pages Developer’s Guide and Reference

JSP Runtime Error Processing
JSP Error Page Example
The following example, nullpointer.jsp, generates an error and uses an error
page, myerror.jsp, to output contents of the implicit exception object.

Code for nullpointer.jsp

<HTML>
<BODY>
<%@ page errorPage="myerror.jsp" %>
Null pointer is generated below:
<%
 String s=null;
 s.length();
%>
</BODY>
</HTML>

Code for myerror.jsp

<HTML>
<BODY>
<%@ page isErrorPage="true" %>
Here is your error:
<%= exception %>
</BODY>
</HTML>

Note: There is ambiguity in the JSP 1.1 specification regarding
exception types that can be handled through the JSP mechanism.

In OracleJSP, a page implementation class generated by the
translator can handle an instance of the java.lang.Exception
class or a subclass, but cannot handle an instance of the
java.lang.Throwable class or any subclass other than
Exception. A Throwable instance will be thrown by the
OracleJSP container to the servlet container.

The ambiguity is expected to be addressed in the JSP 1.2
specification. OracleJSP behavior will be modified appropriately in
a future release.
 Basics 3-19

JSP Runtime Error Processing
This example results in the following output:

Note: The line "Null pointer is generated below:" in
nullpointer.jsp is not output when processing is forwarded to
the error page. This shows the difference between JSP "include" and
"forward" functionality—with a "forward", the output from the
"forward-to" page replaces the output from the "forward-from" page.
3-20 JavaServer Pages Developer’s Guide and Reference

JSP Starter Sample for Data Access
JSP Starter Sample for Data Access
Chapter 1, "General Overview", provides a couple of simple JSP examples; however,
if you are using OracleJSP, you presumably want to access an Oracle database or
middle-tier database cache. This section offers a more interesting sample that uses
standard JDBC code in a JSP page to perform a query.

Because the JDBC API is simply a set of Java interfaces, JavaServer Pages
technology directly supports its use within JSP scriptlets.

The following example creates a query dynamically from search conditions the user
enters through an HTML form (typed into a box and entered with an Ask Oracle
button). To perform the specified query, it uses JDBC code in a method called
runQuery() that is defined in a JSP declaration. It also defines a method
formatResult() within the JSP declaration to produce the output. The
runQuery() method uses the scott schema with password tiger. (JDBC is used
because SQLJ is primarily for static SQL, although Oracle SQLJ adds extensions for
dynamic SQL.)

The HTML INPUT tag specifies that the string entered in the form be named cond.
Therefore, cond is also the input parameter to the getParameter() method of the
implicit request object for this HTTP request, and the input parameter to the
runQuery() method (which puts the cond string into the query WHERE clause).

Notes:

■ Oracle JDBC provides several driver alternatives: 1) the JDBC
OCI driver for use with an Oracle client installation; 2) a
100%-Java JDBC Thin driver that can be used in essentially any
client situation (including applets); 3) a JDBC server-side Thin
driver to access one Oracle database or database cache from
within another Oracle database or database cache; and 4) a
JDBC server-side internal driver to access the database or
database cache within which the Java code is running (such as
from a Java stored procedure or Enterprise JavaBean). For more
information about Oracle JDBC, see the Oracle9i JDBC
Developer’s Guide and Reference.

■ OracleJSP also supports SQLJ (embedded SQL in Java) for static
SQL operations and provides custom JavaBeans and custom
SQL tags for data access. These features are discussed in
Chapter 5, "OracleJSP Extensions".
 Basics 3-21

JSP Starter Sample for Data Access
<%@ page language="java" import="java.sql.*" %>
<HTML>
<HEAD> <TITLE> The JDBCQuery JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">
<% String searchCondition = request.getParameter("cond");
 if (searchCondition != null) { %>
 <H3> Search results for <I> <%= searchCondition %> </I> </H3>
 <%= runQuery(searchCondition) %> <HR>

<% } %>
Enter a search condition:
<FORM METHOD="get">
<INPUT TYPE="text" NAME="cond" SIZE=30>
<INPUT TYPE="submit" VALUE="Ask Oracle");
</FORM>
</BODY>
</HTML>
<%-- Declare and define the runQuery() method. --%>
<%! private String runQuery(String cond) throws SQLException {
 Connection conn = null;
 Statement stmt = null;
 ResultSet rset = null;
 try {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 conn = DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott", "tiger");
 stmt = conn.createStatement();
 // dynamic query
 rset = stmt.executeQuery ("SELECT ename, sal FROM scott.emp "+
 (cond.equals("") ? "" : "WHERE " + cond));
 return (formatResult(rset));
 } catch (SQLException e) {
 return ("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
 } finally {

Notes:

■ Another approach to this example would be to define the
runQuery() method in <%...%> scriptlet syntax instead of
<%!...%> declaration syntax.

■ This example uses the JDBC OCI driver, which requires an
Oracle client installation. If you want to run this sample, use an
appropriate JDBC driver and connection string.
3-22 JavaServer Pages Developer’s Guide and Reference

JSP Starter Sample for Data Access
 if (rset!= null) rset.close();
 if (stmt!= null) stmt.close();
 if (conn!= null) conn.close();
 }
 }
 private String formatResult(ResultSet rset) throws SQLException {
 StringBuffer sb = new StringBuffer();
 if (!rset.next())
 sb.append("<P> No matching rows.<P>\n");
 else { sb.append("");
 do { sb.append("" + rset.getString(1) +
 " earns $ " + rset.getInt(2) + ".\n");
 } while (rset.next());
 sb.append("");
 }
 return sb.toString();
 }
%>

The graphic below illustrates sample output for the following input:

sal >= 2500 AND sal < 5000
 Basics 3-23

JSP Starter Sample for Data Access
3-24 JavaServer Pages Developer’s Guide and Reference

 Key Considera
4

Key Considerations

This chapter discusses important programming, configurational, and runtime
considerations, as well as special considerations for particular execution
environments. The following topics are covered:

■ General JSP Programming Strategies, Tips, and Traps

■ Key OracleJSP Configuration Issues

■ OracleJSP Runtime Page and Class Reloading (Non-OSE Only)

■ Considerations for the Oracle9i Servlet Engine

■ Considerations for Apache/JServ Servlet Environments
tions 4-1

General JSP Programming Strategies, Tips, and Traps
General JSP Programming Strategies, Tips, and Traps
This section discusses issues you should consider when programming JSP pages
that will run in the OracleJSP container, regardless of the particular target
environment. The following assortment of topics are covered:

■ JavaBeans Versus Scriptlets

■ Use of Enterprise JavaBeans in JSP Pages

■ Use of JDBC Performance Enhancement Features

■ Static Includes Versus Dynamic Includes

■ When to Consider Creating and Using JSP Tag Libraries

■ Use of a Central Checker Page

■ Workarounds for Large Static Content in JSP Pages

■ Method Variable Declarations Versus Member Variable Declarations

■ Page Directive Characteristics

■ JSP Preservation of White Space and Use with Binary Data

JavaBeans Versus Scriptlets
The section "Separation of Business Logic from Page Presentation—Calling
JavaBeans" on page 1-5 describes a key advantage of JavaServer Pages technology:
Java code containing the business logic and determining the dynamic content can
be separated from the HTML code containing the request processing, presentation
logic, and static content. This separation allows HTML experts to focus on
presentation logic in the JSP page itself, while Java experts focus on business logic
in JavaBeans that are called from the JSP page.

A typical JSP page will have only brief snippets of Java code, usually for Java
functionality for request processing or presentation. The sample page in "JSP Starter
Sample for Data Access" on page 3-21, although illustrative, is probably not an ideal
design. Data access, such as in the runQuery() method in the sample, is usually

Note: In addition to being aware of what is discussed in this
section, you should be aware of OracleJSP translation and
deployment issues and behavior. See Chapter 6, "JSP Translation
and Deployment".
4-2 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
more appropriate in a JavaBean. However, the formatResult() method in the
sample, which formats the output, is more appropriate for the JSP page itself.

Use of Enterprise JavaBeans in JSP Pages
To use an Enterprise JavaBean (EJB) in a JSP page, choose either of the following
approaches:

■ Call the EJB directly from the JSP page.

■ Use a JavaBean wrapper for the EJB and call the JavaBean from the JSP page as
you would any other JavaBean (preferred).

For general information, this section provides two examples of calling an EJB from a
JSP page—one where the JSP page runs in a middle-tier environment and one
where it runs in the Oracle9i Servlet Engine. These two examples point out some
significant advantages in using OSE.

These are followed by an example using the more modular approach of calling an
EJB from a JavaBean wrapper.

For general information about the Oracle EJB implementation, see the Oracle9i
Enterprise JavaBeans Developer’s Guide and Reference.

Calling an EJB from a JSP Page in the Middle Tier
The following JSP page calls an EJB from a middle-tier environment such as the
Oracle9i Application Server. In this case, the service URL is specified as
sess_iiop://localhost:2481:ORCL (you may need to modify it to use your
own hostname, IIOP port number and Oracle instance name). The JNDI naming
context is set up through the new InitialContext(env) construction, where
env is a hashtable defining the parameters for the context. Once the initial context
(ic) is created, the code looks up the EJB home object using the service URL and the
JNDI name for the EJB:

EmployeeHome home = (EmployeeHome) ic.lookup (surl + "/test/employeeBean");

Then the home.create() method is called to create an instance of the bean, and
the bean’s query() method is called to get the name and salary for the employee
whose number was entered through the HTML form in the JSP page.
 Key Considerations 4-3

General JSP Programming Strategies, Tips, and Traps
Following is the sample code:

<HTML>
<%@ page import="employee.Employee, employee.EmployeeHome,
employee.EmpRecord, oracle.aurora.jndi.sess_iiop.ServiceCtx,
javax.naming.Context, javax.naming.InitialContext, java.util.Hashtable"
%>

<HEAD> <TITLE> The CallEJB JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">

<% String empNum = request.getParameter("empNum");
 String surl = request.getParameter("surl");
 if (empNum != null) {
 try {
 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, "scott");
 env.put(Context.SECURITY_CREDENTIALS, "tiger");
 env.put(Context.SECURITY_AUTHENTICATION,
 ServiceCtx.NON_SSL_LOGIN);
 Context ic = new InitialContext (env);
 EmployeeHome home = (EmployeeHome)ic.lookup (surl +
 "/test/employeeBean");
 Employee testBean = home.create();
 EmpRecord empRec = testBean.query (Integer.parseInt(empNum));
%>
<h2><BLOCKQUOTE><BIG><PRE>
 Hello, I’m an EJB in Oracle9i.
 Employee <%= empRec.ename %> earns $ <%= empRec.sal %>
<% } catch (Exception e) { %>
 Error occurred: <%= e %>
<% }
 } %>
</PRE></BIG></BLOCKQUOTE></h2>
 <HR>
<P>Enter an employee number and EJB service URL:</P>
<FORM METHOD=get>
<INPUT TYPE=text NAME="empNum" SIZE=10 value="7654">
<INPUT TYPE=text NAME="surl" SIZE=40 value="sess_iiop://localhost:2481:ORCL">
<INPUT TYPE=submit VALUE="Ask Oracle">
</FORM>
</BODY>
</HTML>
4-4 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
Calling an EJB from a JSP Page in the Oracle9i Servlet Engine
If you are deploying the JSP page to Oracle9i to execute in the OSE environment,
the EJB lookup and invocation is much simpler and highly optimized. In this case,
the bean lookup is done locally within the Oracle9i JNDI namespace. An explicit
service URL specification is not required. The naming context is initialized for the
current session with the simple call:

Context ic = new InitialContext();

Note that the constructor in this case does not require any arguments, unlike the
middle-tier example. The bean is looked up using just its JNDI name (without the
service URL):

EmployeeHome home = (EmployeeHome)ic.lookup ("/test/employeeBean");

Following is the sample code:

<HTML>
<%@ page import="employee.Employee, employee.EmployeeHome,
employee.EmpRecord, oracle.aurora.jndi.sess_iiop.ServiceCtx,
javax.naming.Context, javax.naming.InitialContext,
java.util.Hashtable" %>

<HEAD> <TITLE> The CallEJB JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">

<% String empNum = request.getParameter("empNum");
 if (empNum != null) {
 try {
 Context ic = new InitialContext();
 EmployeeHome home = (EmployeeHome)ic.lookup("/test/employeeBean");
 Employee testBean = home.create();
 EmpRecord empRec = testBean.query (Integer.parseInt(empNum));
%>
<h2><BLOCKQUOTE><BIG><PRE>
 Hello, I’m an EJB in Oracle9i.
 Employee <%= empRec.ename %> earns $ <%= empRec.sal %>
<% } catch (Exception e) { %>
 Error occurred: <%= e %>
<% }
 } %>
</PRE></BIG></BLOCKQUOTE></h2>
 <HR>

<P>Enter an employee number URL:</P>
 Key Considerations 4-5

General JSP Programming Strategies, Tips, and Traps
<FORM METHOD=get>
<INPUT TYPE=text NAME="empNum" SIZE=10 value="7654">
<INPUT TYPE=submit VALUE="Ask Oracle">
</FORM>
</BODY>
</HTML>

Calling an EJB from a JavaBean Wrapper Called from a JSP Page
The following example provides a JSP page that calls a JavaBean wrapper, which in
turn calls an EJB.

The JSP page uses an instance, employeeBean, of the EmployeeEJBWrapper
JavaBean class. It calls the setServiceURL() method on the bean to set the
database URL, according to the URL entered through the HTTP request object. It
calls the doCallEJB() method on the bean to call the EJB.

The JavaBean implements the HttpSessionBindingListener interface. (See
"Standard Session Resource Management—HttpSessionBindingListener" on
page 3-12 for information about this interface.) When the session expires, the
valueUnbound() method is called to destroy the EJB instance.

JNDI setup, in the bean, is accomplished as in the preceding examples.

Following is the JSP page:

<HTML>
<%@ page import="beans.EmployeeEJBWrapper" %>

<jsp:useBean id="employeeBean" class="beans.EmployeeEJBWrapper" scope="session"
/>

<HEAD> <TITLE> The CallEJB JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">

<%
 String empNum = request.getParameter("empNum");
 String surl = request.getParameter("surl");
 String inJServer = System.getProperty("oracle.jserver.version");
 // save the parameters in the bean instance
 if (surl != null) {
 employeeBean.setServiceURL(surl);
 }
 if (empNum != null) {
 employeeBean.setEmpNumber(empNum);
4-6 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
%>

 <h2><BLOCKQUOTE><BIG><PRE>
 Employee Salary
 <%= employeeBean.doCallEJB(Integer.parseInt(empNum), inJServer) %>
 </PRE></BIG></BLOCKQUOTE></h2>
 <HR>
<% }
 // show the defaults or the values last entered
 String val1 = ((empNum == null) ? "7654" : employeeBean.getEmpNumber());
 String val2 = ((surl == null) ? "sess_iiop://localhost:2481:ORCL"
 : employeeBean.getServiceURL());
%>

<P>Enter the following data:
 <FORM METHOD=get>
 Employee Number: <INPUT TYPE=text NAME="empNum" SIZE=10
 VALUE= <%= val1 %>>
<% if (inJServer == null) {
 // not running in JServer, need a service URL
%>
 <P> EJB Service URL: <INPUT TYPE=text NAME="surl" SIZE=40
 VALUE= <%= val2 %>>
<%
 } %>
<INPUT TYPE=submit VALUE="Ask Oracle">
</FORM>
</BODY>
</HTML>

And here is the JavaBean code:

package beans;

import employee.Employee;
import employee.EmployeeHome;
import employee.EmpRecord;
import oracle.aurora.jndi.sess_iiop.ServiceCtx;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.servlet.http.HttpSessionBindingListener;
import javax.servlet.http.HttpSessionBindingEvent;
import java.util.Hashtable;
 Key Considerations 4-7

General JSP Programming Strategies, Tips, and Traps
public class EmployeeEJBWrapper
 implements HttpSessionBindingListener
{
 public EmployeeEJBWrapper() {} // no arg bean constructor

 private Employee employeeEJB = null;
 private String empNumber = null;
 private String serviceURL = null;

 public String doCallEJB(int empno, String inJServer) {
 try {
 if (employeeEJB == null) {
 Context ic = null;
 EmployeeHome home = null;
 if (inJServer == null) { // not running in JServer, usual client setup
 Hashtable env = new Hashtable();
 env.put(Context.URL_PKG_PREFIXES, "oracle.aurora.jndi");
 env.put(Context.SECURITY_PRINCIPAL, "scott");
 env.put(Context.SECURITY_CREDENTIALS, "tiger");
 env.put(Context.SECURITY_AUTHENTICATION, ServiceCtx.NON_SSL_LOGIN);
 ic = new InitialContext (env);
 home = (EmployeeHome)ic.lookup (serviceURL +
 "/test/employeeBean");
 }
 else { // in JServer, use simplified and optimized lookup
 ic = new InitialContext();
 home = (EmployeeHome)ic.lookup ("/test/employeeBean");
 }
 employeeEJB = home.create();
 }
 EmpRecord empRec = empRec = employeeEJB.query (empno);
 return empRec.ename + " $" + empRec.sal;
 } catch (Exception e) { return "Error occurred: " + e;}
 }

 public void setServiceURL (String serviceURL) {
 this.serviceURL = serviceURL;
 }

 public String getServiceURL () {
 return serviceURL;
 }

 public void setEmpNumber(String empNo) {
 empNumber = empNo;
4-8 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
 }

 public String getEmpNumber() {
 return empNumber;
 }

 public void valueBound(HttpSessionBindingEvent event) {
 // nothing to do here, EJB will be created when query is submitted
 }

 public synchronized void valueUnbound(HttpSessionBindingEvent event) {
 if (employeeEJB != null) {
 try {
 employeeEJB.remove(); // destroy the bean instance
 } catch (Exception ignore) {}
 employeeEJB = null;
 }
 }
}

Use of JDBC Performance Enhancement Features
You can use the following performance enhancement features, supported through
Oracle JDBC extensions, in JSP applications executed by OracleJSP:

■ caching database connections

■ caching JDBC statements

■ batching update statements

■ prefetching rows during a query

■ caching rowsets

Most of these performance features are supported by the ConnBean and
ConnCacheBean data-access JavaBeans (but not by DBBean). "Oracle Data-Access
JavaBeans" on page 5-13 describes these beans.

Database Connection Caching
Creating a new database connection is an expensive operation that you should
avoid whenever possible. Instead, use a cache of database connections. A JSP
application can get a logical connection from a pre-existing pool of physical
connections, and return the connection to the pool when done.
 Key Considerations 4-9

General JSP Programming Strategies, Tips, and Traps
You can create a connection pool at any one of the four JSP scopes—application,
session, page, or request. It is most efficient to use the maximum possible
scope—application scope if that is permitted by the Web server, or session
scope if not.

The Oracle JDBC connection caching scheme, built upon standard connection
pooling as specified in the JDBC 2.0 standard extensions, is implemented in the
ConnCacheBean data-access JavaBean provided with OracleJSP. This is probably
how most OracleJSP developers will use connection caching. For information, see
"ConnCacheBean for Connection Caching" on page 5-16.

It is also possible to use the Oracle JDBC OracleConnectionCacheImpl class
directly, as though it were a JavaBean, as in the following example (although all
OracleConnectionCacheImpl functionality is available through
ConnCacheBean):

<jsp:useBean id="occi" class="oracle.jdbc.pool.OracleConnectionCacheImpl"
 scope="session" />

The same properties are available in OracleConnectionCacheImpl as in
ConnCacheBean. They can be set either through jsp:setProperty statements or
directly through the class setter methods.

For examples of using OracleConnectionCacheImpl directly, see "Connection
Caching—ConnCache3.jsp and ConnCache1.jsp" on page 9-18.

For information about the Oracle JDBC connection caching scheme and the
OracleConnectionCacheImpl class, see the Oracle9i JDBC Developer’s Guide and
Reference.

JDBC Statement Caching
Statement caching, an Oracle JDBC extension, improves performance by caching
executable statements that are used repeatedly within a single physical connection,
such as in a loop or in a method that is called repeatedly. When a statement is
cached, the statement does not have to be re-parsed, the statement object does not
have to be recreated, and parameter size definitions do not have to be recalculated
each time the statement is executed.

The Oracle JDBC statement caching scheme is implemented in the ConnBean and
ConnCacheBean data-access JavaBeans that are provided with OracleJSP. Each of
these beans has a stmtCacheSize property that can be set through a
jsp:setProperty statement or the bean’s setStmtCacheSize() method. For
information, see "ConnBean for a Database Connection" on page 5-14 and
"ConnCacheBean for Connection Caching" on page 5-16.
4-10 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
Statement caching is also available directly through the Oracle JDBC
OracleConnection and OracleConnectionCacheImpl classes. For
information about the Oracle JDBC statement caching scheme and the
OracleConnection and OracleConnectionCacheImpl classes, see the
Oracle9i JDBC Developer’s Guide and Reference.

Update Batching
The Oracle JDBC update batching feature associates a batch value (limit) with each
prepared statement object. With update batching, instead of the JDBC driver
executing a prepared statement each time its "execute" method is called, the driver
adds the statement to a batch of accumulated execution requests. The driver will
pass all the operations to the database for execution once the batch value is reached.
For example, if the batch value is 10, then each batch of ten operations will be sent
to the database and processed in one trip.

OracleJSP supports Oracle JDBC update batching directly, through the
executeBatch property of the ConnBean data-access JavaBean. You can set this
property through a jsp:setProperty statement or through the setter method of
the bean. If you use ConnCacheBean instead, you can enable update batching
through Oracle JDBC functionality in the connection and statement objects you
create. See "ConnBean for a Database Connection" on page 5-14 and
"ConnCacheBean for Connection Caching" on page 5-16 for information about these
JavaBeans.

For more information about Oracle JDBC update batching, see the Oracle9i JDBC
Developer’s Guide and Reference.

Row Prefetching
The Oracle JDBC row prefetching feature allows you to set the number of rows to
prefetch into the client during each trip to the database or middle-tier database
cache while a result set is being populated during a query, reducing the number of
round trips to the server.

OracleJSP supports Oracle JDBC row prefetching directly, through the preFetch
property of the ConnBean data-access JavaBean. You can set this property through

Important: Statements can be cached only within a single physical
connection. When you enable statement caching for a connection
cache, statements can be cached across multiple logical connection
objects from a single pooled connection object, but not across
multiple pooled connection objects.
 Key Considerations 4-11

General JSP Programming Strategies, Tips, and Traps
a jsp:setProperty statement or through the setter method of the bean. If you
use ConnCacheBean instead, you can enable row prefetching through Oracle JDBC
functionality in the connection and statement objects you create. See "ConnBean for
a Database Connection" on page 5-14 and "ConnCacheBean for Connection
Caching" on page 5-16 for information about these JavaBeans.

For more information about Oracle JDBC row prefetching, see the Oracle9i JDBC
Developer’s Guide and Reference.

Rowset Caching
A cached rowset provides a disconnected, serializable, and scrollable container for
retrieved data. This feature is useful for small sets of data that do not change often,
particularly when the client requires frequent or continued access to the
information. By contrast, using a normal result set requires the underlying
connection and other resources to be held. Be aware, however, that large cached
rowsets consume a lot of memory on the client.

In Oracle9i, Oracle JDBC provides a cached rowset implementation. If you are using
an Oracle JDBC driver, use code inside a JSP page to create and populate a cached
rowset as follows:

CachedRowSet crs = new CachedRowSet();
crs.populate(rset); // rset is a previously created JDBC ResultSet object.

Once the rowset is populated, the connection and statement objects used in
obtaining the original result set can be closed.

For more information about Oracle JDBC cached rowsets, see the Oracle9i JDBC
Developer’s Guide and Reference.

Static Includes Versus Dynamic Includes
The include directive, described in "Directives" on page 1-10, makes a copy of the
included page and copies it into a JSP page (the "including page") during
translation. This is known as a static include (or translate-time include) and uses the
following syntax:

<%@ include file="/jsp/userinfopage.jsp" %>

The jsp:include action, described in "JSP Actions and the <jsp: > Tag Set" on
page 1-18, dynamically includes output from the included page within the output of
the including page, during runtime. This is known as a dynamic include (or runtime
include).
4-12 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
Here is an example of jsp:include syntax:

<jsp:include page="/jsp/userinfopage.jsp" flush="true" />

For those of you who are familiar with C syntax, a static include is comparable to a
#include statement. A dynamic include is similar to a function call. They are both
useful, but serve different purposes.

Logistics of Static Includes
A static include increases the size of the generated code for the including JSP page,
as though the text of the included page is physically copied into the including page
during translation (at the point of the include directive). If a page is included
multiple times within an including page, multiple copies are made.

A JSP page that is statically included does not need to stand as an independent,
translatable entity. It simply consists of text that will be copied into the including
page. The including page, with the included text copied in, must then be
translatable. And, in fact, the including page does not have to be translatable prior
to having the included page copied into it. A sequence of statically included pages
can each be fragments unable to stand on their own.

Logistics of Dynamic Includes
A dynamic include does not significantly increase the size of the generated code for
the including page, although method calls, such as to the request dispatcher, will be
added. The dynamic include results in runtime processing being switched from the
including page to the included page, as opposed to the text of the included page
being physically copied into the including page.

A dynamic include does increase processing overhead, with the necessity of the
additional call to the request dispatcher.

A page that is dynamically included must be an independent entity, able to be
translated and executed on its own. Likewise, the including page must be
independent as well, able to be translated and executed without the dynamic
include.

Note: Both static includes and dynamic includes can be used only
between pages in the same servlet context.
 Key Considerations 4-13

General JSP Programming Strategies, Tips, and Traps
Advantages, Disadvantages, and Typical Uses
Static includes affect page size; dynamic includes affect processing overhead. Static
includes avoid the overhead of the request dispatcher that a dynamic include
necessitates, but may be problematic where large files are involved. (There is a 64K
size limit on the service method of the generated page implementation class—see
"Workarounds for Large Static Content in JSP Pages" on page 4-16.)

Overuse of static includes can also make debugging your JSP pages difficult,
making it harder to trace program execution. Avoid subtle interdependencies
between your statically included pages.

Static includes are typically used to include small files whose content is used
repeatedly in multiple JSP pages. For example:

■ Statically include a logo or copyright message at the top or bottom of each page
in your application.

■ Statically include a page with declarations or directives (such as imports of Java
classes) that are required in multiple pages.

■ Statically include a central "status checker" page from each page of your
application. (See "Use of a Central Checker Page" on page 4-15.)

Dynamic includes are useful for modular programming. You may have a page that
sometimes executes on its own but sometimes is used to generate some of the
output of other pages. Dynamically included pages can be reused in multiple
including pages without increasing the size of the including pages.

When to Consider Creating and Using JSP Tag Libraries
Some situations dictate that the development team consider creating and using
custom tags. In particular, consider the following situations:

■ JSP pages would otherwise have to include a significant amount of Java logic
regarding presentation and format of output.

■ Special manipulation or redirection of JSP output is required.

Replacing Java Syntax
Because one cannot count on JSP developers being experienced in Java
programming, they may not be ideal candidates for coding Java logic in the
page—logic that dictates presentation and format of the JSP output, for example.
4-14 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
This is a situation where JSP tag libraries might be helpful. If many of your JSP
pages will require such logic in generating their output, a tag library to replace Java
logic would be a great convenience for JSP developers.

An example of this is the JML sample tag library provided with OracleJSP. This
library includes tags that support logic equivalent to Java loops and conditionals.
See "Overview of the JSP Markup Language (JML) Sample Tag Library" on
page 7-20 for information.

Manipulating or Redirecting JSP Output
Another common situation for custom tags is if special runtime processing of the
response output is required. Perhaps the desired functionality requires an extra
processing step or redirection of the output to somewhere other than the browser.

An example is to create a custom tag that you can place around a body of text
whose output will be redirected into a log file instead of to a browser, such as in the
following example (where cust is the prefix for the tag library and log is one of
the library’s tags):

<cust:log>
 Today is <%= new java.util.Date() %>
 Text to log.
 More text to log.
 Still more text to log.
</cust:log>

See "Tag Handlers" on page 7-4 for information about processing of tag bodies.

Use of a Central Checker Page
For general management or monitoring of your JSP application, it may be useful to
use a central "checker" page that you include from each page in your application. A
central checker page could accomplish tasks such as the following during execution
of each page:

■ Check session status.

■ Check login status (such as checking the cookie to see if a valid login has been
accomplished).

■ Check usage profile (if a logging mechanism has been implemented to tally
events of interest, such as mouse clicks or page visits).

There could be many more uses as well.
 Key Considerations 4-15

General JSP Programming Strategies, Tips, and Traps
As an example, consider a session checker class, MySessionChecker, that
implements the HttpSessionBindingListener interface. (See "Standard
Session Resource Management—HttpSessionBindingListener" on page 3-12.)

public class MySessionChecker implements HttpSessionBindingListener
{
 ...

 valueBound(HttpSessionBindingEvent event)
 {...}

 valueUnbound(HttpSessionBindingEvent event)
 {...}

 ...
}

You can create a checker JSP page, suppose centralcheck.jsp, that includes
something like the following:

<jsp:useBean id="sessioncheck" class="MySessionChecker" scope="session" />

In any page that includes centralcheck.jsp, the servlet container will call the
valueUnbound() method implemented in the MySessionChecker class as soon
as sessioncheck goes out of scope (at the end of the session). Presumably this is
to manage session resources. You could include centralcheck.jsp at the end of
each JSP page in your application.

Workarounds for Large Static Content in JSP Pages
JSP pages with large amounts of static content (essentially, large amounts of HTML
code without content that changes at runtime) may result in slow translation and
execution.

There are two primary workarounds for this (either workaround will speed
translation):

■ Put the static HTML into a separate file and use a dynamic include command
(jsp:include) to include its output in the JSP page output at runtime. See
"JSP Actions and the <jsp: > Tag Set" on page 1-18 for information about the
jsp:include command.
4-16 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
■ Put the static HTML into a Java resource file.

OracleJSP will do this for you if you enable the external_resource
configuration parameter. This parameter is documented in "OracleJSP
Configuration Parameters (Non-OSE)" on page A-15.

For deployment to Oracle9i, the -extres and -hotload options of the ojspc
pre-translation tool, and the -hotload option of the publishjsp session shell
command, also offer this functionality.

Another possible, though unlikely, problem with JSP pages that have large static
content is that most (if not all) JVMs impose a 64K byte size limit on the code within
any single method. Although javac would be able to compile it, the JVM would be
unable to execute it. Depending on the implementation of the JSP translator, this
may become an issue for a JSP page, because generated Java code from essentially
the entire JSP page source file goes into the service method of the page
implementation class. (Java code is generated to output the static HTML to the
browser, and Java code from any scriptlets is copied directly.)

Another possible, though rare, scenario is for the Java scriptlets in a JSP page to be
large enough to create a size limit problem in the service method. If there is enough
Java code in a page to create a problem, however, then the code should be moved
into JavaBeans.

Important: A static <%@ include... %> command would not
work. It would result in the included file being included at
translation time, with its code being effectively copied back into the
including page. This would not solve the problem.

Note: Putting static HTML into a resource file may result in a
larger memory footprint than the jsp:include workaround
mentioned above, because the page implementation class must load
the resource file whenever the class is loaded.
 Key Considerations 4-17

General JSP Programming Strategies, Tips, and Traps
Method Variable Declarations Versus Member Variable Declarations
In "Scripting Elements" on page 1-12, it is noted that JSP <%! ... %> declarations
are used to declare member variables, while method variables must be declared in
<% ... %> scriptlets.

Be careful to use the appropriate mechanism for each of your declarations,
depending on how you want to use the variables:

■ A variable that is declared in <%! ... %> JSP declaration syntax is declared at
the class level in the page implementation class that is generated by the JSP
translator.

■ A variable that is declared in <% ... %> JSP scriptlet syntax is local to the
service method of the page implementation class.

Consider the following example, decltest.jsp:

<HTML>
<BODY>
<% double f2=0.0; %>
<%! double f1=0.0; %>
Variable declaration test.
</BODY>
</HTML>

This results in something like the following code in the page implementation class:

package ...;
import ...;

public class decltest extends oracle.jsp.runtime.HttpJsp {
 ...

 // ** Begin Declarations
 double f1=0.0; // *** f1 declaration is generated here ***
 // ** End Declarations

 public void _jspService
 (HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException {
 ...

 try {
 out.println("<HTML>");
 out.println("<BODY>");
 double f2=0.0; // *** f2 declaration is generated here ***
4-18 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
 out.println("");
 out.println("");
 out.println("Variable declaration test.");
 out.println("</BODY>");
 out.println("</HTML>");
 out.flush();
 }
 catch(Exception e) {
 try {
 if (out != null) out.clear();
 }
 catch(Exception clearException) {
 }
 finally {
 if (out != null) out.close();
 }
 }
}

Page Directive Characteristics
This section discusses the following page directive characteristics:

■ A page directive is static and takes effect during translation; you cannot specify
parameter settings to be evaluated at runtime.

■ Java import settings in page directives are cumulative within a JSP page.

Page Directives Are Static
A page directive is static; it is interpreted during translation. You cannot specify
dynamic settings to be interpreted at runtime. Consider the following examples:

Example 1 The following page directive is valid.

<%@ page contentType="text/html; charset=EUCJIS" %>

Note: This code is provided for conceptual purposes only. Most of
the class is deleted for simplicity, and the actual code of a page
implementation class generated by OracleJSP would differ
somewhat.
 Key Considerations 4-19

General JSP Programming Strategies, Tips, and Traps
Example 2 The following page directive is not valid and will result in an error.
(EUCJIS is hard-coded here, but the example also holds true for any character set
determined dynamically at runtime.)

<% String s="EUCJIS"; %>
<%@ page contentType="text/html; charset=<%=s%>" %>

For some page directive settings there are workarounds. Reconsidering Example 2,
there is a setContentType() method that allows dynamic setting of the content
type, as described in "Dynamic Content Type Settings" on page 8-4.

Page Directive Import Settings Are Cumulative
Java import settings in page directives within a JSP page are cumulative.

Within any single JSP page, the following two examples are equivalent:

<%@ page language="java" %>
<%@ page import="sqlj.runtime.ref.DefaultContext, java.sql.*" %>

or:

<%@ page language="java" %>
<%@ page import="sqlj.runtime.ref.DefaultContext" %>
<%@ page import="java.sql.*" %>

After the first page directive import setting, the import setting in the second
page directive adds to the set of classes or packages to be imported, as opposed to
replacing the classes or packages to be imported.

JSP Preservation of White Space and Use with Binary Data
OracleJSP (and JavaServer Pages implementations in general) preserves source code
white space, including carriage returns and linefeeds, in what is output to the
browser. Insertion of such white space may not be what the developer intended,
and typically makes JSP technology a poor choice for generating binary data.

White Space Examples
The following two JSP pages produce different HTML output, due to the use of
carriage returns in the source code.
4-20 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
Example 1—No Carriage Returns

The following JSP page does not have carriage returns after the Date() and
getParameter() calls. (The third and fourth lines, starting with the Date() call,
actually comprise a single wrap-around line of code.)

nowhitsp.jsp:

<HTML>
<BODY>
<%= new java.util.Date() %> <% String user=request.getParameter("user"); %> <%=
(user==null) ? "" : user %>
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

This results in the following HTML output to the browser. (Note that there are no
blank lines after the date.)

<HTML>
<BODY>
Tue May 30 20:07:04 PDT 2000
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

Example 2—Carriage Returns

The following JSP page does include carriage returns after the Date() and
getParameter() calls.

whitesp.jsp:

<HTML>
<BODY>
<%= new java.util.Date() %>
<% String user=request.getParameter("user"); %>
<%= (user==null) ? "" : user %>
 Key Considerations 4-21

General JSP Programming Strategies, Tips, and Traps
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

This results in the following HTML output to the browser.

<HTML>
<BODY>
Tue May 30 20:19:20 PDT 2000

Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

Note the two blank lines between the date and the "Enter name:" line. In this
particular case the difference is not significant, because both examples produce the
same appearance in the browser, as shown below. However, this discussion
nevertheless demonstrates the general point about preservation of white space.

Reasons to Avoid Binary Data in JSP Pages
For the following reasons, JSP pages are a poor choice for generating binary data.
Generally you should use servlets instead.
4-22 JavaServer Pages Developer’s Guide and Reference

General JSP Programming Strategies, Tips, and Traps
■ JSP implementations are not designed to handle binary data—there are no
methods for writing raw bytes in the JspWriter object.

■ During execution, the JSP container preserves whitespace. Whitespace is
sometimes unwanted, making JSP pages a poor choice for generating binary
output to the browser (a .gif file, for example) or other uses where whitespace
is significant.

Consider the following example:

...
<% out.getOutputStream().write(...binary data...) %>
<% out.getOutputStream().write(...more binary data...) %>

In this case, the browser will receive an unwanted newline characters in the
middle of the binary data or at the end, depending on the buffering of your
output buffer. You can avoid this problem by not using a carriage return
between the lines of code, but of course this is an undesirable programming
style.

Trying to generate binary data in JSP pages largely misses the point of JSP
technology anyway, which is intended to simplify the programming of dynamic
textual content.
 Key Considerations 4-23

Key OracleJSP Configuration Issues
Key OracleJSP Configuration Issues
This section covers important effects of how you set key page directive parameters
and OracleJSP configuration parameters. The discussion focuses on JSP page
optimization, classpath issues, and class loader issues. The following topics are
covered:

■ Optimization of JSP Execution

■ Classpath and Class Loader Issues (Non-OSE Only)

Optimization of JSP Execution
There are settings you can consider to optimize JSP performance, including the
following:

■ Unbuffering a JSP Page

■ Not Checking for Retranslation (Non-OSE Only)

■ Not Using an HTTP Session

Unbuffering a JSP Page
By default, a JSP page uses an area of memory known as a page buffer. This buffer
(8KB by default) is required if the page uses dynamic globalization support content
type settings, forwards, or error pages. If it does not use any of these features, you
can disable the buffer in a page directive:

<%@ page buffer="none" %>

This will improve the performance of the page by reducing memory usage and
saving an output step. Output goes straight to the browser instead of going through
the buffer first.

Not Checking for Retranslation (Non-OSE Only)
When OracleJSP executes a JSP page, by default it will check whether a page
implementation class already exists, compare the .class file timestamp against the
.jsp source file timestamp, and retranslate the page if the .class file is older.

If comparing timestamps is unnecessary (as is the case in a typical deployment
environment, where source code will not change), you can avoid the timestamp
comparison by disabling the OracleJSP developer_mode flag
(developer_mode=false).
4-24 JavaServer Pages Developer’s Guide and Reference

Key OracleJSP Configuration Issues
The default setting is true. For information about how to set this flag in the
Apache/JServ, JSWDK, and Tomcat environments, see "OracleJSP Configuration
Parameter Settings" on page A-26.

Not Using an HTTP Session
If a JSP page does not need an HTTP session (essentially, does not need to store or
retrieve session attributes), then you can avoid using a session through the
following page directive:

<%@ page session="false" %>

This will improve the performance of the page by eliminating the overhead of
session creation or retrieval.

Note that although servlets by default do not use a session, JSP pages by default do
use a session. For background information, see "Servlet Sessions" on page B-4.)

Classpath and Class Loader Issues (Non-OSE Only)
OracleJSP uses its own classpath, distinct from the Web server classpath, and by
default uses its own class loader to load classes from this classpath. This has
significant advantages and disadvantages.

The OracleJSP classpath combines the following elements:

■ the OracleJSP default classpath

■ additional classpaths you specify in the OracleJSP classpath parameter

If there are classes you want loaded by the OracleJSP class loader instead of the
system class loader, use the OracleJSP classpath configuration parameter, or
place the classes in the OracleJSP default classpath. See "Advantages and
Disadvantages of the OracleJSP Class Loader" on page 4-27 for related discussion.

OracleJSP Default Classpath
Oracle JSP defines standard locations on the Web server for locating .class files
and .jar files for classes (such as JavaBeans) that it requires. OracleJSP will find
files in these locations without any Web server classpath configuration.

These locations are as follows and are relative to the application root:

/WEB-INF/classes
/WEB-INF/lib
/_pages
 Key Considerations 4-25

Key OracleJSP Configuration Issues
The _pages directory is the default location for translated and compiled JSP pages
(as output by the JSP translator).

The classes directory is for individual Java .class files. These classes should be
stored in subdirectories under the classes directory, according to Java package
naming conventions.

For example, consider a JavaBean called LottoBean whose code defines it to be in
the oracle.jsp.sample.lottery package. OracleJSP will look for
LottoBean.class in the following location relative to the application root:

/WEB-INF/classes/oracle/jsp/sample/lottery/LottoBean.class

The lib directory is for .jar files. Because Java package structure is specified in
the .jar file structure, the .jar files are all directly in the lib directory (not in
subdirectories).

As an example, LottoBean.class might be stored in lottery.jar, located as
follows relative to the application root:

/WEB-INF/lib/lottery.jar

The application root directory can be located in any of the following locations (as
applicable, depending on your Web server and servlet environment), listed in the
order they are searched:

■ the Web server directory the application is mapped to

■ the Web server document root directory

■ the directory containing the globals.jsa file (where applicable, typically in a
servlet 2.0 environment)

Important: If you want classes in the WEB-INF directories to be
loaded by the system class loader instead of the OracleJSP class
loader, place the classes somewhere in the Web server classpath as
well. The system class loader takes priority—any class that is
placed in both classpaths will always be loaded by the system class
loader.
4-26 JavaServer Pages Developer’s Guide and Reference

Key OracleJSP Configuration Issues
OracleJSP classpath Configuration Parameter
Use the OracleJSP classpath configuration parameter to add to the OracleJSP
classpath.

For more information about this parameter, see "OracleJSP Configuration
Parameters (Non-OSE)" on page A-15.

For information about how to set this parameter in the Apache/JServ, JSWDK, and
Tomcat environments, see "OracleJSP Configuration Parameter Settings" on
page A-26.

Advantages and Disadvantages of the OracleJSP Class Loader
Using the OracleJSP class loader results in the following advantages and
disadvantages:

■ limited access to OracleJSP-loaded classes from classes loaded by any other
class loader

When a class is loaded by the OracleJSP class loader , its definition exists in the
OracleJSP class loader only. Classes loaded by the system class loader or any
other class loader, including any servlets, would have only limited access. The
classes loaded by another class loader could not cast the OracleJSP-loaded class
or call methods on it. This may be desirable or undesirable, depending on your
situation.

■ automatic class reloading

By default, the OracleJSP class loader will automatically reload a class in the
OracleJSP classpath whenever the class file or JAR file has been modified since

Notes:

■ Some Web servers, particularly those supporting the servlet 2.0
specification, do not offer full application support such as
complete servlet context functionality. In this case, or when
application mapping is not used, the default application is the
server itself, and the application root is the Web server
document root.

■ For older servlet environments, the globals.jsa file is an
Oracle extension that can be used as an application marker to
establish an application root. See "OracleJSP Application and
Session Support for Servlet 2.0" on page 5-38.
 Key Considerations 4-27

Key OracleJSP Configuration Issues
it was last loaded. For a JSP page, for example, this can happen as a result of
dynamic retranslation, which occurs by default if the .jsp source file for a page
has a more recent timestamp than its corresponding page implementation
.class file.

This is usually only advantageous in a development environment. In a typical
deployment environment, the source, class, and JAR files will not change, and it
is inefficient to check them for changes.

See "Dynamic Class Reloading" on page 4-30 for more information.

It follows that in a deployment environment, you will typically not want to use the
OracleJSP classpath. By default, the classpath parameter is empty.
4-28 JavaServer Pages Developer’s Guide and Reference

OracleJSP Runtime Page and Class Reloading (Non-OSE Only)
OracleJSP Runtime Page and Class Reloading (Non-OSE Only)
This section describes conditions under which OracleJSP retranslates pages, reloads
pages, and reloads classes during runtime. This discussion does not apply to JSP
pages running in the Oracle9i Servlet Engine.

Dynamic Page Retranslation
As a Web application is running, the OracleJSP container by default will
automatically retranslate and reload a JSP page whenever the page source is
modified.

OracleJSP checks whether the last-modified time of the page implementation class
file, as indicated in the OracleJSP in-memory cache, is older than the last-modified
time of the JSP page source file.

You can avoid the overhead of OracleJSP checking timestamps for retranslation by
setting the OracleJSP developer_mode flag to false. This is advantageous in a
deployment environment, where source and class files will typically not change. For
more information about this flag, see "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15. For how to set it, see "OracleJSP Configuration
Parameter Settings" on page A-26.

Dynamic Page Reloading
The OracleJSP container will automatically reload a JSP page (in other words,
reload the generated page implementation class) in the following circumstances:

■ the page is retranslated

(See "Dynamic Page Retranslation" above.)

Notes:

■ Because of the usage of in-memory values for the class file
last-modified time, note that removing a page implementation
class file from the file system will not cause OracleJSP to
retranslate the associated JSP page source. OracleJSP will only
retranslate when the JSP page source file timestamp changes.

■ The class file will be regenerated when the cache is lost. This
happens whenever a request is directed to this page after the
server is restarted or after another page in this application has
been retranslated.
 Key Considerations 4-29

OracleJSP Runtime Page and Class Reloading (Non-OSE Only)
■ a Java class that is called by the page and was loaded by the OracleJSP class
loader (and not the system class loader) is modified

(See "Dynamic Class Reloading" below.)

■ any page in the same application is reloaded

A JSP pages is associated with the overall Web application within which it runs.
(Even JSP pages not associated with a particular application are considered to
be part of a "default application".)

Whenever a JSP page is reloaded, all JSP pages in the application are reloaded.

Dynamic Class Reloading
By default, before OracleJSP dispatches a request that will execute a Java class that
was loaded by the OracleJSP class loader, it checks to see if the class file has been
modified since it was first loaded. If the class has been modified, then the OracleJSP
class loader reloads it.

This applies only to classes in the OracleJSP classpath, which includes the
following:

■ JAR files in the /WEB-INF/lib directory

■ .class files in the /WEB-INF/classes directory

■ classes in paths specified through the OracleJSP classpath configuration
parameter

■ generated .class files in the _pages output directory

As mentioned in the preceding section, "Dynamic Page Reloading", reloading a
class results in the dynamic reloading of JSP pages that reference that class.

Notes:

■ OracleJSP does not reload a page just because a statically
included file has changed. (Statically included files, included
through <%@ include %> syntax, are included during
translation-time.)

■ Page reloading and page retranslation are not the same thing.
Reloading does not imply retranslation.
4-30 JavaServer Pages Developer’s Guide and Reference

OracleJSP Runtime Page and Class Reloading (Non-OSE Only)
For information about the classpath and developer_mode configuration
parameters and how to set them, see "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15 and "OracleJSP Configuration Parameter Settings" on
page A-26.

Important:

■ Remember that classes must be in the JSP classpath, not the
system classpath, to be dynamically reloaded. If they are in the
system classpath as well, the system class loader may take
precedence in some circumstances, possibly interfering with
JSP automatic-reloading functionality.

■ Dynamic class reloading can be expensive in terms of CPU
usage. You can disable this feature by setting the OracleJSP
developer_mode parameter to false. This is appropriate in
deployment environments where classes are not expected to
change.
 Key Considerations 4-31

Considerations for the Oracle9i Servlet Engine
Considerations for the Oracle9i Servlet Engine
The Oracle9i Servlet Engine (OSE) is integrated with the Oracle9i database and
middle-tier database cache. To run in OSE, a JSP page must be deployed (loaded
and published) into Oracle9i. The details of deploying JSP pages into Oracle9i are
discussed in Chapter 6, "JSP Translation and Deployment". This section discusses
special programming considerations for the OSE environment and provides an
overview of key OSE characteristics.

A JSP application can run in OSE by using the Oracle HTTP Server, powered by
Apache, as a front-end Web server (generally recommended), or by using OSE as
the Web server directly. See "Oracle Web Application Data-Access Strategies" on
page 2-8. When installing Oracle9i, Oracle HTTP Server is set as the default Web
server. Refer to your installation instructions if you want to change this setting.

It is assumed that JSP pages running in the Oracle9i Servlet Engine are intended for
data access, so some background is provided on database connections through Java.

JSP code is generally completely portable between OSE and other environments
where OracleJSP is used. The exception is that connecting through the JDBC
server-side internal driver is different (for example, does not require a connect
string), as mentioned in "Database Connections Through Java" on page 4-33.

Aside from connecting through the server-side internal driver or using any other
features specific to the Oracle JVM, JSP pages written for OSE are portable to other
environments running OracleJSP. The original code has to be modified and
re-translated only if Oracle9i-specific features were used.

The following topics are covered here:

■ Introduction to the Oracle JVM and JDBC Server-Side Internal Driver

■ Database Connections Through Java

■ Use of JNDI by the Oracle9i Servlet Engine

■ Equivalent Code for OracleJSP Runtime Configuration Parameters

Notes: This section discusses development considerations in
targeting OSE. For deployment considerations, including hotloaded
classes and client-side versus server-side translation, see "Overview
of Features and Logistics in Deployment to Oracle9i" on page 6-14.
4-32 JavaServer Pages Developer’s Guide and Reference

Considerations for the Oracle9i Servlet Engine
Introduction to the Oracle JVM and JDBC Server-Side Internal Driver
Each Oracle session through Java invokes its own dedicated Java virtual machine.
This one-to-one correspondence between sessions and JVMs is important to keep in
mind.

Any Java program running inside a JVM in the target Oracle9i database or
middle-tier database cache typically uses the JDBC server-side internal driver to
access the local SQL engine. This driver is intrinsically tied to Oracle9i and the
Oracle JVM. The driver runs as part of the same process as the database. It also runs
within a default Oracle session—the same session in which the JVM was invoked.

The server-side internal driver is optimized to run within the database or database
cache and provide direct access to SQL data and PL/SQL subprograms. The entire
JVM operates in the same address space as the database or database cache and the
SQL engine. Access to the SQL engine is a function call—there is no network. This
enhances the performance of your JDBC programs and is much faster than
executing a remote Oracle Net call to access the SQL engine.

Database Connections Through Java
The information here is applicable for connections to either the middle-tier database
cache or the back-end database. (Both are referred to as simply "the database" for
this discussion.)

Because the JDBC server-side internal driver runs within a default Oracle session,
you are already "connected" to the database implicitly. There are two JDBC methods
you can use to access the default connection:

■ Use the Oracle-specific defaultConnection() method of the
OracleDriver class. (This returns the same connection object each time it is
called.)

■ Use the static DriverManager.getConnection() method, with either
jdbc:oracle:kprb or jdbc:default:connection as the URL string.
(This returns a different connection object each time it is called.)

Using the defaultConnection() method is generally recommended.

It is also possible to use the server-side Thin driver for an internal connection (a
connection to the database in which your Java code is running), but this is not
typical.
 Key Considerations 4-33

Considerations for the Oracle9i Servlet Engine
For more information about server-side connections through Oracle JDBC, see the
Oracle9i JDBC Developer’s Guide and Reference.

Connecting with the OracleDriver Class defaultConnection() Method
The oracle.jdbc.driver.OracleDriver class defaultConnection()
method is an Oracle extension you can use to make an internal database connection.
This method always returns the same connection object. Even if you invoke this
method multiple times, assigning the resulting connection object to different
variable names, a single connection object is reused.

The defaultConnection() method does not take a connect string. For example:

import java.sql.*;
import oracle.jdbc.driver.*;

class JDBCConnection
{
 public static Connection connect() throws SQLException
 {
 Connection conn = null;
 try {
 // connect with the server-side internal driver
 OracleDriver ora = new OracleDriver();
 conn = ora.defaultConnection();
 }

 } catch (SQLException e) {...}
 return conn;
 }
}

Notes:

■ Alternatively, you can connect using custom JavaBeans
provided with OracleJSP. See "Oracle Data-Access JavaBeans"
on page 5-13.

■ You are not required to register the OracleDriver class for
connecting with the server-side internal driver, although there
is no harm in doing so. This is true whether you are using
getConnection() or defaultConnection() to make the
connection.
4-34 JavaServer Pages Developer’s Guide and Reference

Considerations for the Oracle9i Servlet Engine
Note that there is no conn.close() call in the example. When JDBC code is
running inside the target server, the connection is an implicit data channel, not an
explicit connection instance as from a client. It should typically not be closed.

If you do call the close() method, be aware of the following:

■ All connection instances obtained through the defaultConnection()
method, which actually all reference the same connection object, will be closed
and unavailable for further use, with state and resource cleanup as appropriate.
Executing defaultConnection() afterward would result in a new
connection object and, therefore, a new transaction.

■ Even though the connection object is closed, the implicit connection to the
database will not be closed.

Connecting with the DriverManager.getConnection() Method
Instead of using the defaultConnection() method to make an internal database
connection, you can use the static DriverManager.getConnection() method
with either of the following connect strings:

Connection conn = DriverManager.getConnection("jdbc:oracle:kprb:");

or:

Connection conn = DriverManager.getConnection("jdbc:default:connection:");

Any user name or password you include in the URL string is ignored in connecting
to the server default connection.

The DriverManager.getConnection() method returns a new Java
Connection object every time you call it. Note that although the method is not
creating a new physical connection (only a single implicit connection is used), it is
returning a new object.

The fact that DriverManager.getConnection() returns a new connection
object every time you call it is significant if you are working with object maps,
known as "type maps". A type map, for mapping Oracle SQL object types to Java
classes, is associated with a specific Connection object and with any state that is
part of the object. If you want to use multiple type maps as part of your program,
then you can call getConnection() to create a new Connection object for each
type map. For general information about type maps, see the Oracle9i JDBC
Developer’s Guide and Reference.
 Key Considerations 4-35

Considerations for the Oracle9i Servlet Engine
Connecting with the Server-Side Thin Driver
The Oracle JDBC server-side Thin driver is generally intended for connecting to one
database from within another database. It is possible, however, to use the
server-side Thin driver for an internal connection. Specify a connect string as you
would for any usage of the Oracle JDBC Thin driver.

This feature offers the possible advantage of code portability between the Oracle9i
Servlet Engine and other servlet environments; however, the server-side internal
driver offers more efficient performance.

No Auto-Commit in Server-Side Internal Driver
The JDBC auto-commit feature is disabled in the server-side internal driver. You
must commit or roll back changes manually.

No Connection Pooling or Caching with Server-Side Internal Driver
Connection pooling and caching is not applicable when using the server-side
internal driver, because it uses a single implicit database connection. Attempts to
use these features through the internal driver may actually degrade performance.

Use of JNDI by the Oracle9i Servlet Engine
The Oracle9i Servlet Engine uses a JNDI mechanism to look up "published" JSP
pages and servlets, although this mechanism is generally invisible to the JSP
developer or user. Publishing a JSP page, which you accomplish during deployment
to OSE, involves either running the Oracle session-shell publishjsp command
(for deployment with server-side translation) or running the session-shell
publishservlet command (for deployment with client-side translation).

The publishservlet command requires you to specify a virtual path name and a
servlet name for the page implementation class. The virtual path name is then used
to invoke the page through a URL, or to include or forward to the page from any
other page running in OSE.

The publishjsp command can either take a virtual path name and servlet name
on the command line, or will infer them from the JSP source file name and directory
path that you specify.

Both the servlet name and the virtual path name are entered into the Oracle9i JNDI
namespace, but the JSP developer or user need only be aware of the virtual path
name.
4-36 JavaServer Pages Developer’s Guide and Reference

Considerations for the Oracle9i Servlet Engine
For more information about publishing a JSP page for OSE, see "Translating and
Publishing JSP Pages in Oracle9i (Session Shell publishjsp)" on page 6-46, for
deployment with server-side translation, or "Publishing Translated JSP Pages in
Oracle9i (Session Shell publishservlet)" on page 6-69, for deployment with
client-side translation.

For general information about how the Oracle9i Servlet Engine uses JNDI, see the
Oracle9i Servlet Engine Developer’s Guide.

Equivalent Code for OracleJSP Runtime Configuration Parameters
Some OracleJSP configuration parameters take effect during translation; others take
effect during runtime. When you deploy JSP pages to Oracle9i to run in the Oracle9i
Servlet Engine, you can make appropriate translation-time settings through
command-line options of the OracleJSP pre-translation tool.

At runtime, however, OSE does not support execution-time configuration
parameters. The most significant runtime parameter is translate_params, which
relates to globalization support. For a discussion of equivalent code, see "Code
Equivalent to the translate_params Configuration Parameter" on page 8-7.
 Key Considerations 4-37

Considerations for Apache/JServ Servlet Environments
Considerations for Apache/JServ Servlet Environments
There are special considerations in running OracleJSP in Apache/JServ-based
platforms, including Oracle9i Application Server release 1.0.x, because this is a
servlet 2.0 environment. The servlet 2.0 specification lacked support for some
significant features that are available in servlet 2.1 and 2.2 environments.

For information about how to configure an Apache/JServ environment for
OracleJSP, see the following sections:

■ "Add OracleJSP-Related JAR and ZIP Files to Web Server Classpath" on
page A-8

■ "Map JSP File Name Extensions to Oracle JspServlet" on page A-11

■ "Setting OracleJSP Parameters in Apache/JServ" on page A-27

(If you use Apache/JServ through an Oracle platform, see the installation and
configuration documentation for that platform instead.)

The rest of this section, after summarizing the use of Apache/JServ by the Oracle9i
Application Server, discusses the following Apache-specific considerations:

■ Dynamic Includes and Forwards in Apache/JServ

■ Application Framework for Apache/JServ

■ JSP and Servlet Session Sharing

■ Directory Alias Translation

Use of Apache/JServ in the Oracle9i Application Server
As of Oracle9i Application Server release 1.0.x, this product uses Apache/JServ as
its servlet environment. As in any Apache/JServ or other servlet 2.0 environment,
there are special considerations relating to servlet and JSP usage. These are detailed
in the sections that follow.
4-38 JavaServer Pages Developer’s Guide and Reference

Considerations for Apache/JServ Servlet Environments
For a brief overview of the Oracle9i Application Server and its use of the Oracle
HTTP Server, see "Support for OracleJSP in Oracle Environments" on page 2-4.

Dynamic Includes and Forwards in Apache/JServ
JSP dynamic includes (the jsp:include action) and forwards (the jsp:forward
action) rely on request dispatcher functionality that is present in servlet 2.1 and 2.2
environments but not in servlet 2.0 environments.

OracleJSP, however, provides extended functionality to allow dynamic includes and
forwards from one JSP page to another JSP page or to a static HTML file in
Apache/JServ and other servlet 2.0 environments.

This OracleJSP functionality for servlet 2.0 environments does not, however, allow
dynamic forwards or includes to servlets. (Servlet execution is controlled by the
JServ or other servlet container, not the OracleJSP container.)

If you want to include or forward to a servlet in Apache/JServ, however, you can
create a JSP page that acts as a wrapper for the servlet.

The following example shows a servlet, and a JSP page that acts as a wrapper for
that servlet. In an Apache/JServ environment, you can effectively include or
forward to the servlet by including or forwarding to the JSP wrapper page.

Servlet Code Presume that you want to include or forward to the following servlet:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

Notes:

■ The Oracle9i Application Server includes the Oracle HTTP
Server, powered by Apache, as its Web server. Be aware that if
you use the Oracle HTTP Server mod_ose Apache mod to run
your JSP application in the Oracle9i Servlet Engine, you are
using the OSE servlet 2.2 environment, not the Oracle9i
Application Server Apache/JServ servlet 2.0 environment.

■ Future releases of the Oracle HTTP Server and Oracle9i
Application Server may use a servlet environment other than
Apache/JServ.
 Key Considerations 4-39

Considerations for Apache/JServ Servlet Environments
public class TestServlet extends HttpServlet {

 public void init(ServletConfig config) throws ServletException
 {
 super.init(config);
 System.out.println("initialized");
 }

 public void destroy()
 {
 System.out.println("destroyed");
 }

 public void service
 (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<HTML><BODY>");
 out.println("TestServlet Testing");
 out.println("<H3>The local time is: "+ new java.util.Date());
 out.println("</BODY></HTML>");
 }
}

JSP Wrapper Page Code You can create the following JSP wrapper (wrapper.jsp)
for the preceding servlet.

<%-- wrapper.jsp--wraps TestServlet for JSP include/forward --%>
<%@ page isThreadSafe="true" import="TestServlet" %>
<%!
 TestServlet s=null;
 public void jspInit() {
 s=new TestServlet();
 try {
 s.init(this.getServletConfig());
 } catch (ServletException se)
 {
 s=null;
 }
 }
 public void jspDestroy() {
 s.destroy();
4-40 JavaServer Pages Developer’s Guide and Reference

Considerations for Apache/JServ Servlet Environments
 }
%>
<% s.service(request,response); %>

Including or forwarding to wrapper.jsp in a servlet 2.0 environment has the same
effect as directly including or forwarding to TestServlet in a servlet 2.1 or 2.2
environment.

Application Framework for Apache/JServ
The servlet 2.0 specification does not provide the full servlet context framework for
application support that is provided in later specifications.

For servlet 2.0 environments, including Apache/JServ, OracleJSP supplies its own
application framework using a file, globals.jsa, that you can use as an
application marker.

For more information, see "Distinct Applications and Sessions Through globals.jsa"
on page 5-39.

Notes:

■ Whether to set isThreadSafe to true or false in the
wrapper JSP page depends on whether the original servlet is
thread-safe.

■ As an alternative to using a wrapper JSP page for this situation,
you can add HTTP client code to the original JSP page (the one
from which the include or forward is to occur). You can use
an instance of the standard java.net.URL class to create an
HTTP request from the original JSP page to the servlet. (Note
that you cannot share session data or security credentials in this
scenario.) Alternatively, you can use the HTTPClient class
from Innovation GmbH. The Oracle JVM provides a modified
version of this class that supports SSL, directly or through a
proxy, when you use https:// for the URL. (See
http://www.innovation.ch/java/HTTPClient for
general information about this class. Click "Getting Started" for
information that includes how to replace the JDK HTTP client
with the HTTPClient class.) Details of these alternatives are
outside the scope of this document, however, and this approach
is generally not recommended.
 Key Considerations 4-41

Considerations for Apache/JServ Servlet Environments
JSP and Servlet Session Sharing
To share HTTP session information between JSP pages and servlets in an
Apache/JServ environment, you must configure your environment so that
oracle.jsp.JspServlet (the servlet that acts as the front-end of the OracleJSP
container) is in the same zone as the servlet or servlets with which you want your
JSP pages to share a session. Consult your Apache documentation for more
information.

To verify proper zone setup, some browsers allow you to enable a warning for
cookies. In an Apache environment, the cookie name includes the zone name.

Additionally, for applications that use a globals.jsa file, the OracleJSP
configuration parameter session_sharing should be set to true (the default) for
JSP session data to be accessible to servlets. See these sections for related
information:

■ "OracleJSP Application and Session Support for Servlet 2.0" on page 5-38

■ "OracleJSP Configuration Parameters (Non-OSE)" on page A-15

■ "OracleJSP Configuration Parameter Settings" on page A-26

Directory Alias Translation
Apache supports directory aliasing by allowing you to create a "virtual directory"
through an Alias command in the httpd.conf configuration file. This allows
Web documents to be placed outside the default doc root directory.

Consider the following sample httpd.conf entry:

Alias /icons/ "/apache/apache139/icons/"

This command should result in icons being usable as an alias for the
/apache/apache139/icons/ path. In this way, for example, the file
/apache/apache139/icons/art.gif, could be accessed by the following URL:

http://host[:port]/icons/art.gif

Currently, however, this functionality does not work properly for servlets and JSP
pages, because the Apache/JServ getRealPath() method returns an incorrect
value when processing a file under an alias directory.

OracleJSP provides an Apache-specific configuration parameter,
alias_translation, that works around this limitation when you set
alias_translation=true (the default setting is false).
4-42 JavaServer Pages Developer’s Guide and Reference

Considerations for Apache/JServ Servlet Environments
Be aware that setting alias_translation=true also results in the alias directory
becoming the application root. Therefore, in a dynamic include or forward
command where the target file name starts with "/", the expected target file location
will be relative to the alias directory.

Consider the following example, which results in all JSP and HTML files under
/private/foo being effectively under the application /mytest:

Alias /mytest/ "/private/foo/"

And assume there is a JSP page located as follows:

/private/foo/xxx.jsp

The following dynamic include command will work, because xxx.jsp is directly
below the aliased directory, /private/foo, which is effectively the application
root:

<jsp:include page="/xxx.jsp" flush="true" />

JSP pages in other applications or in the general doc root cannot forward to or
include JSP pages or HTML files under the /mytest application. It is only possible
to forward to or include pages or HTML files within the same application (per the
servlet 2.2 specification).

Notes:

■ An implicit application is created for the Web server document
root and each aliasing root.

■ For information about how to set OracleJSP configuration
parameters in an Apache/JServ environment, see "Setting
OracleJSP Parameters in Apache/JServ" on page A-27.
 Key Considerations 4-43

Considerations for Apache/JServ Servlet Environments
4-44 JavaServer Pages Developer’s Guide and Reference

 OracleJSP Exten
5

OracleJSP Extensions

This chapter discusses extended functionality offered by OracleJSP, covering the
following topics:

■ Portable OracleJSP Programming Extensions

■ Oracle-Specific Programming Extensions

■ OracleJSP Application and Session Support for Servlet 2.0

Portable extensions are provided through Oracle’s JSP Markup Language (JML)
custom tags, JML extended datatypes, SQL custom tags, and data-access JavaBeans.
You can use these features in other JSP environments.

Non-portable extensions are those that require OracleJSP for translation and
execution.

Extended application and session support for servlet 2.0 environments is supplied
through Oracle globals.jsa functionality and also requires OracleJSP.
sions 5-1

Portable OracleJSP Programming Extensions
Portable OracleJSP Programming Extensions
The Oracle extensions documented in this section are implemented either through
the Oracle JSP Markup Language (JML) sample tag library, custom JavaBeans, or
the custom SQL tag library. These extensions are portable to any standard JSP
environment. This includes the following:

■ JML extended datatypes

■ XML and XSL support (including JML tags)

■ data-access JavaBeans

■ SQL tags

JML Extended Datatypes
To work around shortcomings for JSP usage in the Java primitive datatypes and
java.lang wrapper types (as discussed in "OracleJSP Extended Datatypes" on
page 2-12), OracleJSP provides the following JavaBean classes in the
oracle.jsp.jml package to act as wrappers for the most common Java
datatypes:

■ JmlBoolean to represent a boolean value

■ JmlNumber to represent an int value

■ JmlFPNumber to represent a double value

■ JmlString to represent a String value

Each of these classes has a single attribute, value, and includes methods to get the
value, set the value from input in various formats, test whether the value is equal to
a value specified in any of several formats, and convert the value to a string.

Alternatively, instead of using the getValue() and setValue() methods, you
can use the jsp:getProperty and jsp:setProperty tags, as with any other
bean.

The following example creates a JmlNumber instance called count that has
application scope:

<jsp:useBean id="count" class="oracle.jsp.jml.JmlNumber" scope="application" />

Important: To use any of the JML functionality, see "Overview of
the JSP Markup Language (JML) Sample Tag Library" on page 7-20.
5-2 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
Later, assuming that the value has been set elsewhere, you can access it as follows:

<h3> The current count is <%=count.getValue() %> </h3>

The following example creates a JmlNumber instance called maxSize that has
request scope, and sets it using setProperty:

<jsp:useBean id="maxSize" class="oracle.jsp.jml.Number" scope="request" >
 <jsp:setProperty name="maxSize" property="value" value="<%= 25 %>" />
</jsp:useBean>

The remainder of this section documents the public methods of the four extended
datatype classes, followed by an example.

Type JmlBoolean
A JmlBoolean object represents a Java boolean value.

The getValue() and setValue() methods get or set the value property of the
bean as a Java boolean value.

■ boolean getValue()

■ void setValue(boolean)

The setTypedValue() method has several signatures and can set the value
property from a string (such as "true" or "false"), a java.lang.Boolean value, a
Java boolean value, or a JmlBoolean value. For the string input, conversion of
the string is performed according to the same rules as for the standard
java.lang.Boolean.valueOf() method.

■ void setTypedValue(String)

■ void setTypedValue(Boolean)

■ void setTypedValue(boolean)

■ void setTypedValue(JmlBoolean)

The equals() method tests whether the value property is equal to the specified
Java boolean value.

■ boolean equals(boolean)

The typedEquals() method has several signatures and tests whether the value
property has a value equivalent to a specified string (such as "true" or "false"),
java.lang.Boolean value, or JmlBoolean value.

■ boolean typedEquals(String)
 OracleJSP Extensions 5-3

Portable OracleJSP Programming Extensions
■ boolean typedEquals(Boolean)

■ boolean typedEquals(JmlBoolean)

The toString() method returns the value property as a java.lang.String
value, either "true" or "false".

■ String toString()

Type JmlNumber
A JmlNumber object represents a 32-bit number equivalent to a Java int value.

The getValue() and setValue() methods get or set the value property of the
bean as a Java int value.

■ int getValue()

■ void setValue(int)

The setTypedValue() method has several signatures and can set the value
property from a string, a java.lang.Integer value, a Java int value, or a
JmlNumber value. For the string input, conversion of the string is performed
according to the same rules as for the standard java.lang.Integer.decode()
method.

■ void setTypedValue(String)

■ void setTypedValue(Integer)

■ void setTypedValue(int)

■ void setTypedValue(JmlNumber)

The equals() method tests whether the value property is equal to the specified
Java int value.

■ boolean equals(int)

The typedEquals() method has several signatures and tests whether the value
property has a value equivalent to a specified string (such as "1234"),
java.lang.Number value, or JmlNumber value.

■ boolean typedEquals(String)

■ boolean typedEquals(Integer)

■ boolean typedEquals(JmlNumber)
5-4 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
The toString() method returns the value property as an equivalent
java.lang.String value (such as "1234"). This method has the same
functionality as the standard java.lang.Integer.toString() method.

■ String toString()

Type JmlFPNumber
A JmlFPNumber object represents a 64-bit floating point number equivalent to a
Java double value.

The getValue() and setValue() methods get or set the value property of the
bean as a Java double value.

■ double getValue()

■ void setValue(double)

The setTypedValue() method has several signatures and can set the value
property from a string (such as "3.57"), a java.lang.Integer value, a Java int
value, a java.lang.Float value, a Java float value, a java.lang.Double
value, a Java double value, or a JmlFPNumber value. For the string input,
conversion of the string is according to the same rules as for the standard
java.lang.Double.valueOf() method.

■ void setTypedValue(String)

■ void setTypedValue(Integer)

■ void setTypedValue(int)

■ void setTypedValue(Float)

■ void setTypedValue(float)

■ void setTypedValue(Double)

■ void setTypedValue(double)

■ void setTypedValue(JmlFPNumber)

The equals() method tests whether the value property is equal to the specified
Java double value.

■ boolean equals(double)

The typedEquals() method has several signatures and tests whether the value
property has a value equivalent to a specified string (such as "3.57"),
java.lang.Integer value, Java int value, java.lang.Float value, Java
 OracleJSP Extensions 5-5

Portable OracleJSP Programming Extensions
float value, java.lang.Double value, Java double value, or JmlFPNumber
value.

■ boolean typedEquals(String)

■ boolean typedEquals(Integer)

■ boolean typedEquals(int)

■ boolean typedEquals(Float)

■ boolean typedEquals(float)

■ boolean typedEquals(Double)

■ boolean typedEquals(JmlFPNumber)

The toString() method returns the value property as a java.lang.String
value (such as "3.57"). This method has the same functionality as the standard
java.lang.Double.toString() method.

■ String toString()

Type JmlString
A JmlString object represents a java.lang.String value.

The getValue() and setValue() methods get or set the value property of the
bean as a java.lang.String value. If the input in a setValue() call is null,
then the value property is set to an empty (zero-length) string.

■ String getValue()

■ void setValue(String)

The toString() method is functionally equivalent to the getValue() method.

■ String toString()

The setTypedValue() method sets the value property according to the specified
JmlString value. If the JmlString value is null, then the value property is set
to an empty (zero-length) string.

■ void setTypedValue(JmlString)

The isEmpty() method tests whether the value property is an empty
(zero-length) string: ""

■ boolean isEmpty()
5-6 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
The equals() method has two signatures and tests whether the value property is
equal to a specified java.lang.String value or JmlString value.

■ boolean equals(String)

■ boolean equals(JmlString)

JML Datatypes Example
This example illustrates use of JML datatype JavaBeans for management of simple
datatypes at scope. The page declares four session objects—one for each JML type.
The page presents a form that allows you to enter values for each of these types.
Once new values are submitted, the form displays both the new values and the
previously set values. In the process of generating this output, the page updates the
session objects with the new form values.

<jsp:useBean id = "submitCount" class = "oracle.jsp.jml.JmlNumber" scope = "session" />

<jsp:useBean id = "bool" class = "oracle.jsp.jml.JmlBoolean" scope = "session" >
 <jsp:setProperty name = "bool" property = "value" param = "fBoolean" />
</jsp:useBean>

<jsp:useBean id = "num" class = "oracle.jsp.jml.JmlNumber" scope = "session" >
 <jsp:setProperty name = "num" property = "value" param = "fNumber" />
</jsp:useBean>

<jsp:useBean id = "fpnum" class = "oracle.jsp.jml.JmlFPNumber" scope = "session" >
 <jsp:setProperty name = "fpnum" property = "value" param = "fFPNumber" />
</jsp:useBean>

<jsp:useBean id = "str" class = "oracle.jsp.jml.JmlString" scope = "session" >
 <jsp:setProperty name = "str" property = "value" param = "fString" />
</jsp:useBean>

<HTML>

<HEAD>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html;CHARSET=iso-8859-1">
 <META NAME="GENERATOR" Content="Visual Page 1.1 for Windows">
 <TITLE>OracleJSP Extended Datatypes Sample</TITLE>
</HEAD>

<BODY BACKGROUND="images/bg.gif" BGCOLOR="#FFFFFF">
 OracleJSP Extensions 5-7

Portable OracleJSP Programming Extensions
<% if (submitCount.getValue() > 1) { %>
 <h3> Last submitted values </h3>

 bool: <%= bool.getValue() %>
 num: <%= num.getValue() %>
 fpnum: <%= fpnum.getValue() %>
 string: <%= str.getValue() %>

<% }

 if (submitCount.getValue() > 0) { %>

 <jsp:setProperty name = "bool" property = "value" param = "fBoolean" />
 <jsp:setProperty name = "num" property = "value" param = "fNumber" />
 <jsp:setProperty name = "fpnum" property = "value" param = "fFPNumber" />
 <jsp:setProperty name = "str" property = "value" param = "fString" />

 <h3> New submitted values </h3>

 bool: <jsp:getProperty name="bool" property="value" />
 num: <jsp:getProperty name="num" property="value" />
 fpnum: <jsp:getProperty name="fpnum" property="value" />
 string: <jsp:getProperty name="str" property="value" />

<% } %>

<jsp:setProperty name = "submitCount" property = "value" value = "<%= submitCount.getValue() + 1
%>" />

<FORM ACTION="index.jsp" METHOD="POST" ENCTYPE="application/x-www-form-urlencoded">
<P> <pre>
 boolean test: <INPUT TYPE="text" NAME="fBoolean" VALUE="<%= bool.getValue() %>" >
 number test: <INPUT TYPE="text" NAME="fNumber" VALUE="<%= num.getValue() %>" >
fpnumber test: <INPUT TYPE="text" NAME="fFPNumber" VALUE="<%= fpnum.getValue() %>" >
 string test: <INPUT TYPE="text" NAME="fString" VALUE= "<%= str.getValue() %>" >
</pre>

<P> <INPUT TYPE="submit">

</FORM>

</BODY>

</HTML>
5-8 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
OracleJSP Support for XML and XSL
JSP technology can be used to produce dynamic XML pages as well as dynamic
HTML pages. OracleJSP supports the use of XML and XSL technology with JSP
pages in two ways:

■ The OracleJSP translator includes logic to recognize standard XML-alternative
JSP syntax.

■ OracleJSP provides JML tags to apply an XSL stylesheet to the JSP output
stream.

Additionally, the oracle.xml.sql.query.OracleXMLQuery class is provided
with Oracle9i as part of the XML-SQL utility for XML functionality in database
queries. This class requires file xsu12.jar (for JDK 1.2.x) or xsu111.jar (for JDK
1.1.x), which is also required for XML functionality in the OracleJSP data-access
JavaBeans, and which is provided with Oracle9i.

For a JSP sample using OracleXMLQuery, see "XML Query—XMLQuery.jsp" on
page 9-38.

For information about the OracleXMLQuery class and other XML-SQL utility
features, refer to the Oracle9i Application Developer’s Guide - XML and the Oracle9i
XML Reference.

XML-Alternative Syntax
JSP tags, such as <%...%> for scriptlets, <%!...%> for declarations, and
<%=...%> for expressions, are not syntactically valid within an XML document.
Sun Microsystems addressed this in the JavaServer Pages Specification, Version 1.1 by
defining equivalent JSP tags using syntax that is XML-compatible. This is
implemented through a standard DTD that you can specify within a jsp:root
start tag at the beginning of an XML document.

This functionality allows you, for example, to write XML-based JSP pages in an
XML authoring tool.

OracleJSP does not use this DTD directly or require you to use a jsp:root tag, but
the OracleJSP translator includes logic to recognize the alternative syntax specified
in the standard DTD. Table 5–1 documents this syntax.
 OracleJSP Extensions 5-9

Portable OracleJSP Programming Extensions
JSP action tags, such as jsp:useBean, for the most part already use syntax that
complies with XML. Changes due to quoting conventions or for request-time
attribute expressions may be necessary, however.

JML Tags for XSL Stylesheets
Many uses of XML and XSL for dynamic pages require an XSL transformation to
occur in the server before results are returned to the client.

OracleJSP provides two synonymous JML tags to simplify this process. Use either
the JML transform tag or the JML styleSheet tag (their effects are identical), as
in the following example:

<jml:transform href="xslRef" >

 ...Tag body contains regular JSP commands and static text that
 produce the XML code that the stylesheet is to be applies to...

</jml:transform >

(The jml: prefix is used by convention, but you can specify any prefix in your
taglib directive.)

Table 5–1 XML-Alternative Syntax

Standard JSP Syntax XML-Alternative JSP Syntax

<%@ directive ...%>

Such as:
<%@ page ... %>
<%@ include ... %>

<jsp:directive.directive ... />

Such as:
<jsp:directive.page ... />
<jsp:directive.include ... />

<%! ... %> (declaration) <jsp:declaration>
...declarations go here...
</jsp:declaration>

<%= ... %> (expression) <jsp:expression>
...expression goes here...
</jsp:expression>

<% ... %> (scriptlet) <jsp:scriptlet>
...code fragment goes here...
</jsp:scriptlet>
5-10 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
Note the following regarding the href parameter:

■ It can refer to either a static XSL stylesheet or a dynamically generated one. For
example, it can refer to a JSP page or servlet that generates the stylesheet.

■ It can be a fully qualified URL (http://host[:port]/path), an
application-relative JSP reference (starting with "/"), or a page-relative JSP
reference (not starting with "/"). See "Indirectly Requesting a JSP Page" on
page 1-9 for information about application-relative and page-relative paths.

■ It can be dynamically specified. By default, the value of href is a static Java
string. However, you can use standard JSP expression syntax to provide a
dynamically computed value.

Typically, you would use the transform or styleSheet tag to transform an
entire page. However, the tag applies only to what is in its body, between its start
and end tags. Therefore, you can have distinct XSL blocks within a page, each block
bounded by its own transform or styleSheet tag set, specifying its own href
pointer to the appropriate stylesheet.

XSL Example using jml:transform
This section provides a sample XSL stylesheet and a sample JSP page that uses the
jml:transform tag to filter its output through the stylesheet. (This is a simplistic
example—the XML in the page is static. A more realistic example might use the JSP
page to dynamically generate all or part of the XML before performing the
transformation.)

Sample Stylesheet: hello.xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="page">
 <html>
 <head>
 <title>
 <xsl:value-of select="title"/>
 </title>

Important: If you will use any JML tags, refer to "Overview of the
JSP Markup Language (JML) Sample Tag Library" on page 7-20.
 OracleJSP Extensions 5-11

Portable OracleJSP Programming Extensions
 </head>
 <body bgcolor="#ffffff">
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="title">
 <h1 align="center">
 <xsl:apply-templates/>
 </h1>
 </xsl:template>

 <xsl:template match="paragraph">
 <p align="center">
 <i>
 <xsl:apply-templates/>
 </i>
 </p>
 </xsl:template>

</xsl:stylesheet>

Sample JSP Page: hello.jsp

<%@ page session = "false" %>
<%@ taglib uri="/WEB-INF/jmltaglib.tld" prefix="jml" %>

<jml:transform href="style/hello.xsl" >

<page>
 <title>Hello</title>
 <content>
 <paragraph>This is my first XML/XSL file!</paragraph>
 </content>
</page>

</jml:transform>
5-12 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
This example results in the following output:

Oracle Data-Access JavaBeans
OracleJSP supplies a set of custom JavaBeans for accessing an Oracle database or
middle-tier database cache (either is referred to simply as "the database" in the
discussion below). The following beans are included in the oracle.jsp.dbutil
package:

■ ConnBean opens a simple database connection.

■ ConnCacheBean uses Oracle’s connection caching implementation for
database connections. (This requires JDBC 2.0.)

■ DBBean executes a database query.

■ CursorBean provides general DML support for queries; UPDATE, INSERT, and
DELETE statements; and stored procedure calls.

For examples using these beans, see "Data-Access JavaBean Samples" on page 9-23.

All four beans implement the OracleJSP JspScopeListener interface for event
notification. See "OracleJSP Event Handling—JspScopeListener" on page 5-33.

This section presumes a working knowledge of Oracle JDBC. Consult the Oracle9i
JDBC Developer’s Guide and Reference as necessary.
 OracleJSP Extensions 5-13

Portable OracleJSP Programming Extensions
ConnBean for a Database Connection
Use oracle.jsp.dbutil.ConnBean to establish a simple database connection
(one that uses no connection pooling or caching).

ConnBean has the following properties:

■ user (user ID for database schema)

■ password (user password)

■ URL (database connection string)

■ stmtCacheSize (cache size for Oracle JDBC statement caching)

Setting stmtCacheSize enables the Oracle JDBC statement caching feature.
See "JDBC Statement Caching" on page 4-10 for a brief overview of statement
caching features and limitations.

■ executeBatch (batch size for Oracle JDBC update batching)

Setting executeBatch enables Oracle JDBC update batching. See "Update
Batching" on page 4-11 for a brief overview of this feature.

■ preFetch (number of statements to prefetch in Oracle JDBC row prefetching)

Setting preFetch enables Oracle JDBC row prefetching. Refer to "Row
Prefetching" on page 4-11 for a brief overview of this feature.

ConnBean provides the following setter and getter methods for these properties:

■ void setUser(String)

Important: To use the Oracle data-access JavaBeans, install the file
ojsputil.jar and include it in your classpath. This file is
provided with the OracleJSP installation. For XML-related methods
and functionality, you will also need file xsu12.jar (for JDK 1.2.x)
or xsu111.jar (for JDK 1.1.x), which is provided with Oracle9i.

Notes:

■ For queries only, it is simpler to use DBBean, which has its own
connection mechanism.

■ To use connection caching, use ConnCacheBean instead.
5-14 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
■ String getUser()

■ void setPassword(String)

■ String getPassword()

■ void setURL(String)

■ String getURL()

■ void setStmtCacheSize(int)

■ int getStmtCacheSize()

■ void setExecuteBatch(int)

■ int getExecuteBatch()

■ void setPreFetch(int)

■ int getPreFetch()

Use the following methods to open and close a connection:

■ void connect()—Establish a database connection using ConnBean property
settings.

■ void close()—Close the connection and any open cursors.

Use the following method to open a cursor and return a CursorBean object:

■ CursorBean getCursorBean(int, String)

or:

■ CursorBean getCursorBean(int)

Input the following:

– one of the following int constants to specify the type of JDBC statement
you want: CursorBean.PLAIN_STMT (for a Statement object),
CursorBean.PREP_STMT (for a PreparedStatement object), or
CursorBean.CALL_STMT (for a CallableStatement object)

Note: As with any JavaBean you use in a JSP page, you can set
any of the ConnBean properties with a jsp:setProperty action
instead of using the setter method directly.
 OracleJSP Extensions 5-15

Portable OracleJSP Programming Extensions
– a string specifying the SQL operation to execute (optional; alternatively, the
SQL operation can be specified in the CursorBean method call that
executes the statement)

See "CursorBean for DML and Stored Procedures" on page 5-20 for information
about CursorBean functionality.

ConnCacheBean for Connection Caching
Use oracle.jsp.dbutil.ConnCacheBean to use the Oracle JDBC connection
caching mechanism (using JDBC 2.0 connection pooling) for your database
connections. For a brief overview of connection caching, see "Database Connection
Caching" on page 4-9.

ConnCacheBean has the following properties:

■ user (user ID for database schema)

■ password (user password)

■ URL (database connection string)

■ maxLimit (maximum number of connections allowed by this cache)

■ minLimit (minimum number of connections existing for this cache)

If you are using fewer than this number, then there will also be connections in
the "idle pool" of the cache.

■ stmtCacheSize (cache size for Oracle JDBC statement caching)

Setting stmtCacheSize enables the Oracle JDBC statement caching feature.
See "JDBC Statement Caching" on page 4-10 for a brief overview of Oracle JDBC
statement caching features and limitations.

Notes:

■ To use simple connection objects (no pooling or caching), use
ConnBean instead.

■ ConnCacheBean extends OracleConnectionCacheImpl,
which extends OracleDataSource (both in Oracle JDBC
package oracle.jdbc.pool).
5-16 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
■ cacheScheme (type of cache, indicated by one of the following int constants):

– DYNAMIC_SCHEME—New pooled connections can be created above and
beyond the maximum limit, but each one is automatically closed and freed
as soon as the logical connection instance that it provided is no longer in
use.

– FIXED_WAIT_SCHEME—When the maximum limit is reached, any new
connection waits for an existing connection object to be released.

– FIXED_RETURN_NULL_SCHEME—When the maximum limit is reached,
any new connection fails (null is returned) until connection objects have
been released.

The ConnCacheBean class supports methods defined in the Oracle JDBC
OracleConnectionCacheImpl class, including the following getter and setter
methods for its properties:

■ void setUser(String)

■ String getUser()

■ void setPassword(String)

■ String getPassword()

■ void setURL(String)

■ String getURL()

■ void setMaxLimit(int)

■ int getMaxLimit()

■ void setMinLimit(int)

■ int getMinLimit()

■ void setStmtCacheSize(int)

■ int getStmtCacheSize()

■ void setCacheScheme(int)

Specify ConnCacheBean.DYNAMIC_SCHEME,
ConnCacheBean.FIXED_WAIT_SCHEME, or
ConnCacheBean.FIXED_RETURN_NULL_SCHEME.
 OracleJSP Extensions 5-17

Portable OracleJSP Programming Extensions
■ int getCacheScheme()

Returns ConnCacheBean.DYNAMIC_SCHEME,
ConnCacheBean.FIXED_WAIT_SCHEME, or
ConnCacheBean.FIXED_RETURN_NULL_SCHEME.

The ConnCacheBean class also inherits properties and related getter and setter
methods from the oracle.jdbc.pool.OracleDataSource class. This provides
getter and setter methods for the following properties: databaseName,
dataSourceName, description, networkProtocol, portNumber,
serverName, and driverType. For information about these properties and their
getter and setter methods, see the Oracle9i JDBC Developer’s Guide and Reference.

Use the following methods to open and close a connection:

■ Connection getConnection()—Get a connection from the connection
cache using ConnCacheBean property settings.

■ void close()—Close all connections and any open cursors.

Although the ConnCacheBean class does not support Oracle JDBC update
batching and row prefetching directly, you can enable these features by calling the
setDefaultExecuteBatch(int) and setDefaultRowPrefetch(int)
methods of the Connection object that you retrieve from the getConnection()
method. Alternatively, you can use the setExecuteBatch(int) and
setRowPrefetch(int) methods of JDBC statement objects that you create from
the Connection object (update batching is supported only in prepared
statements). See "Update Batching" on page 4-11 and "Row Prefetching" on
page 4-11 for brief overviews of these features.

Note: As with any JavaBean you use in a JSP page, you can set
any of the ConnCacheBean properties with a jsp:setProperty
action instead of using the setter method directly.
5-18 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
DBBean for Queries Only
Use oracle.jsp.dbutil.DBBean to execute queries only.

DBBean has the following properties:

■ user (user ID for database schema)

■ password (user password)

■ URL (database connection string)

DBBean provides the following setter and getter methods for these properties:

■ void setUser(String)

■ String getUser()

■ void setPassword(String)

■ String getPassword()

■ void setURL(String)

■ String getURL()

Notes:

■ ConnCacheBean has the same functionality as
OracleConnectionCacheImpl. See the Oracle9i JDBC
Developer’s Guide and Reference for more information.

■ Unlike ConnBean, when you use ConnCacheBean, you use
normal Connection object functionality to create and execute
statement objects.

Notes:

■ DBBean has its own connection mechanism; do not use
ConnBean.

■ Use CursorBean for any other DML operations (UPDATE,
INSERT, DELETE, or stored procedure calls).
 OracleJSP Extensions 5-19

Portable OracleJSP Programming Extensions
Use the following methods to open and close a connection:

■ void connect()—Establish a database connection using DBBean property
settings.

■ void close()—Close the connection and any open cursors.

Use either of the following methods to execute a query:

■ String getResultAsHTMLTable(String)—Input a string that contains
the SELECT statement.

This method returns a string with the HTML commands necessary to output
the result set as an HTML table. SQL column names (or aliases) are used for the
table column headers.

■ String getResultAsXMLString(String)—Input a string with the
SELECT statement.

This method returns the result set as an XML string, using SQL names (or
aliases) for the XML tags.

CursorBean for DML and Stored Procedures
Use oracle.jsp.dbutil.CursorBean for SELECT, UPDATE, INSERT, or
DELETE operations or stored procedure calls on a simple connection. It uses a
previously defined ConnBean object for the connection.

You can specify a SQL operation in a ConnBean object getCursorBean() call, or
through a call to one of the create(), execute(), or executeQuery() methods
of a CursorBean object as described below.

CursorBean supports scrollable and updatable cursors, update batching, row
prefetching, and query timeout limits. For information about these Oracle JDBC
features, see the Oracle9i JDBC Developer’s Guide and Reference.

Note: As with any JavaBean you use in a JSP page, you can set
any of the DBBean properties with a jsp:setProperty statement
instead of using the setter method directly.
5-20 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
CursorBean has the following properties:

■ executeBatch (batch size for Oracle JDBC update batching)

Setting this property enables Oracle JDBC update batching.

■ preFetch (number of statements to prefetch in Oracle JDBC row prefetching)

Setting this property enables Oracle JDBC row prefetching.

■ queryTimeout (number of seconds for the driver to wait for a statement to
execute before issuing a timeout)

■ resultSetType (scrollability of the result set, as indicated by one of the
following int constants):

– TYPE_FORWARD_ONLY (default)—A result set that can scroll only forward
(using the next() method) and is not positionable.

– TYPE_SCROLL_INSENSITIVE—A result set that can scroll forward or
backward and is positionable, but is not sensitive to underlying data
changes.

– TYPE_SCROLL_SENSITIVE—A result set that can scroll forward or
backward, is positionable, and is sensitive to underlying data changes.

See the Oracle9i JDBC Developer’s Guide and Reference for information about
result set scrollability types.

■ resultSetConcurrency (updatability of the result set, as indicated by one of
the following int constants):

– CONCUR_READ_ONLY (default)—A result set that is read-only (cannot be
updated).

– CONCUR_UPDATABLE—A result set that is updatable.

See the Oracle9i JDBC Developer’s Guide and Reference for information about
updatable result sets.

You can set these properties with the following methods to enable Oracle JDBC
features, as desired:

■ void setExecuteBatch(int)

Note: To use connection caching, use ConnCacheBean and
normal Connection object functionality. Do not use CursorBean.
 OracleJSP Extensions 5-21

Portable OracleJSP Programming Extensions
■ int getExecuteBatch()

■ void setPreFetch(int)

■ int getPreFetch()

■ void setQueryTimeout(int)

■ int getQueryTimeout()

■ void setResultSetConcurrency(int)

Specify CursorBean.CONCUR_READ_ONLY or
CursorBean.CONCUR_UPDATABLE.

■ int getResultSetConcurrency()

Returns CursorBean.CONCUR_READ_ONLY or
CursorBean.CONCUR_UPDATABLE.

■ void setResultSetType(int)

Specify CursorBean.TYPE_FORWARD_ONLY,
CursorBean.TYPE_SCROLL_INSENSITIVE, or
CursorBean.TYPE_SCROLL_SENSITIVE.

■ int getResultSetType()

Returns CursorBean.TYPE_FORWARD_ONLY,
CursorBean.TYPE_SCROLL_INSENSITIVE, or
CursorBean.TYPE_SCROLL_SENSITIVE.

To execute a query once a CursorBean instance has been defined in a
jsp:useBean statement, you can use CursorBean methods to create a cursor in
one of two ways. You can use the following methods to create the cursor and supply
a connection in separate steps:

■ void create()

■ void setConnBean(ConnBean)

Or you can combine the process into a single step:

■ void create(ConnBean)

Note: As with any JavaBean you use in a JSP page, you can set
any of the CursorBean properties with a jsp:setProperty
action instead of using the setter method directly.
5-22 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
(Set up the ConnBean object as described in "ConnBean for a Database Connection"
on page 5-14.)

Then use the following method to specify and execute a query. (This uses a JDBC
plain Statement object behind the scenes.)

■ ResultSet executeQuery(String)

Input a string that contains the SELECT statement.

Alternatively, if you want to format the result set as an HTML table or XML string,
use either of the following methods instead of executeQuery():

■ String getResultAsHTMLTable(String)

Returns a string with HTML statements to create an HTML table for the result
set. Specify a string with the SELECT statement.

■ String getResultAsXMLString(String)

Returns the result set data in an XML string. Specify a string with the SELECT
statement.

To execute an UPDATE, INSERT, or DELETE statement once a CursorBean instance
has been defined in a jsp:useBean action, you can use CursorBean methods to
create a cursor in one of two ways. You can use the following methods to create the
cursor (specifying a statement type as an integer and SQL statement as a string) and
supply a connection:

■ void create(int, String)

■ void setConnBean(ConnBean)

Or you can combine the process into a single step:

■ void create(ConnBean, int, String)

(Set up the ConnBean object as described in "ConnBean for a Database Connection"
on page 5-14.)

The int input takes one of the following constants to specify the type of JDBC
statement you want: CursorBean.PLAIN_STMT (for a Statement object),
CursorBean.PREP_STMT (for a PreparedStatement object), or
CursorBean.CALL_STMT (for a CallableStatement object).

The String input is to specify the SQL statement.
 OracleJSP Extensions 5-23

Portable OracleJSP Programming Extensions
Then use the following method to execute the INSERT, UPDATE, or DELETE
statement. (You can ignore the boolean return value.)

■ boolean execute()

Or for update batching, use the following method, which returns the number of
rows affected. (See below for how to enable update batching.)

■ int executeUpdate()

Additionally, CursorBean supports Oracle JDBC functionality such as
registerOutParameter() for callable statements, setXXX() methods for
prepared statements and callable statements, and getXXX() methods for result sets
and callable statements.

Use the following method to close the database cursor:

■ void close()

OracleJSP Tag Library for SQL
OracleJSP supplies a custom tag library for SQL functionality (separate from the
JML custom tag library).

The following tags are provided:

■ dbOpen—Open a database connection.

■ dbClose—Close a database connection.

■ dbQuery—Execute a query.

■ dbCloseQuery—Close the cursor for a query.

■ dbNextRow—Process the rows of a result set.

■ dbExecute—Execute any SQL statement (DML or DDL).

These tags are described in the following subsections. For examples, see "SQL Tag
Examples" on page 5-29.

Note: The execute() and executeUpdate() methods can
optionally take a String to specify a SQL operation. The
corresponding create() call, as well as the getCursorBean()
call in ConnBean, optionally does not take a String to specify the
SQL operation. Specify an operation either on statement creation or
execution, but not both.
5-24 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
Note the following requirements for using SQL tags:

■ Install the file ojsputil.jar and include it in your classpath. This file is
provided with the OracleJSP installation.

■ Make sure the tag library description file, sqltaglib.tld, is deployed with
the application and is in the location specified in the taglib directives of your
JSP pages, such as in the following example:

<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>

For general information about JSP 1.1 tag library usage, including tag library
description files and taglib directives, see "Standard Tag Library Framework" on
page 7-2.

SQL dbOpen Tag
Use the dbOpen tag to open a database connection.

<sql:dbOpen
 [connId="connection-id"]
 user="username"
 password="password"
 URL="databaseURL" >

...

</sql:dbOpen>

Nested code that you want to execute through this connection can go into the tag
body, between the dbOpen start and end tags. (See "SQL Tag Examples" on
page 5-29.) If you use the optional connId parameter to set a connection identifier,
then code to execute through this connection can reference the connection identifier
and does not have to be between the dbOpen start and end tags. (The connection
identifier can be any arbitrary string.)

Note that you do not have to hardcode a password into the JSP page (which would
be a security concern). Instead, you can get it and other parameters from the
request object, as follows:

<sql:dbOpen connId="conn1" user=<%=request.getParameter("user")%>
 password=<%=request.getParameter("password")%> URL="url" />
 OracleJSP Extensions 5-25

Portable OracleJSP Programming Extensions
(In this example you do not need a tag body for code that will use this connection;
statements using the connection can reference it through the conn1 value of
connId.)

If you set a connection identifier, then the connection is not closed until you close it
explicitly with a dbClose tag. Without a connection identifier, the connection is
closed automatically when the </sql:dbOpen> end tag is encountered.

This tag uses a ConnBean object for the connection. You can optionally set the
additional ConnBean properties stmtCacheSize, preFetch, and batchSize to
enable those Oracle JDBC features. See "ConnBean for a Database Connection" on
page 5-14 for more information.

SQL dbClose Tag
Use the dbClose tag to close a connection associated with the optional connId
parameter specified in a dbOpen tag. If connId is not used in the dbOpen tag, then
the connection is closed automatically when the dbOpen end tag is reached; no
dbClose tag is required.

<sql:dbClose connId="connection-id" />

SQL dbQuery Tag
Use the dbQuery tag to execute a query, outputting the result either as a JDBC
result set, HTML table, or XML string. Place the SELECT statement (one only) in the
tag body, between the dbQuery start and end tags.

<sql:dbQuery
 [queryId="query-id"]
 [connId="connection-id"]
 [output="HTML|XML|JDBC"] >
 ...SELECT statement (one only)...
 </sql:dbQuery>

Note: In an OracleJSP environment, you can have the connection
closed automatically with session-based event handling through
the Oracle JspScopeListener mechanism. See "OracleJSP Event
Handling—JspScopeListener" on page 5-33.
5-26 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
All parameters of this tag are optional, depending on your intended uses as
described below.

You must use the queryId parameter to set a query identifier if you want to
process the result set using a dbNextRow tag. The queryId can be any arbitrary
string.

Additionally, if the queryId parameter is present, then the cursor is not closed
until you close it explicitly with a dbCloseQuery tag. Without a query identifier,
the cursor is closed automatically when the </sql:dbQuery> end tag is
encountered.

If connId is not specified, then dbQuery must be nested within the body of a
dbOpen tag and will use the connection opened in the dbOpen tag.

For the output type:

■ HTML puts the result set into an HTML table (default).

■ XML puts the result set into an XML string.

■ JDBC puts the result set into a JDBC ResultSet object that can be processed
using the dbNextRow tag to iterate through the rows.

This tag uses a CursorBean object for the cursor. See "CursorBean for DML and
Stored Procedures" on page 5-20 for information about CursorBean functionality.

SQL dbCloseQuery Tag
Use the dbCloseQuery tag to close a cursor associated with the optional queryId
parameter specified in a dbQuery tag. If queryId is not used in the dbQuery tag,
then the cursor is closed automatically when the dbQuery end tag is reached; no
dbCloseQuery tag is required.

<sql:dbCloseQuery queryId="query-id" />

Important: In OracleJSP release 1.1.2.x, do not terminate the
SELECT statement with a semi-colon. This would result in a syntax
error.
 OracleJSP Extensions 5-27

Portable OracleJSP Programming Extensions
SQL dbNextRow Tag
Use the dbNextRow tag to process each row of a result set obtained in a dbQuery
tag and associated with the specified queryId. Place the processing code in the tag
body, between the dbNextRow start and end tags. The body is executed for each
row of the result set.

For you to use the dbNextRow tag, the dbQuery tag must specify output=JDBC,
and specify a queryId for the dbNextRow tag to reference.

<sql:dbNextRow queryId="query-id" >

...Row processing...

</sql:dbNextRow >

The result set object is created in an instance of the tag-extra-info class of the
dbQuery tag (see "Tag Library Description Files" on page 7-11 for information
about tag-extra-info classes).

SQL dbExecute Tag
Use the dbExecute tag to execute any DML or DDL statement (one only). Place the
statement in the tag body, between the dbExecute start and end tags.

<sql:dbExecute
 [connId="connection-id"]
 [output="yes|no"] >
 ...DML or DDL statement (one only)...
</sql:dbExecute >

If you do not specify connId, then you must nest dbExecute within the body of a
dbOpen tag and use the connection opened in the dbOpen tag.

Note: In an OracleJSP environment, you can have the cursor
closed automatically with session-based event handling through
the Oracle JspScopeListener mechanism. See "OracleJSP Event
Handling—JspScopeListener" on page 5-33.

Important: In OracleJSP release 1.1.2.x, do not terminate the DML
or DDL statement with a semi-colon. This would result in a syntax
error.
5-28 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
If output=yes, then for DML statements the HTML string "number row[s] affected"
will be output to the browser to notify the user how many database rows were
affected by the operation; for DDL statements, the statement execution status will
be printed. The default setting is no.

This tag uses a CursorBean object for the cursor. See "CursorBean for DML and
Stored Procedures" on page 5-20 for information about CursorBean functionality.

SQL Tag Examples
The following examples show how to use the OracleJSP SQL tags. (To run them
yourself, you will need to set the URL, user name, and password appropriately.)

Example 1: Query with Connection ID

<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>
 <HTML>
 <HEAD>
 <TITLE>A simple example with open, query, and close tags</TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 <HR>
 <sql:dbOpen URL="jdbc:oracle:thin:@dlsun991:1521:816"
 user="scott" password="tiger" connId="con1">
 </sql:dbOpen>
 <sql:dbQuery connId="con1">
 select * from EMP
 </sql:dbQuery>
 <sql:dbClose connId="con1" />
 <HR>
 </BODY>
 </HTML>

Example 2: Query Nested in dbOpen Tag

<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>
 <HTML>
 <HEAD>
 <TITLE>Nested Tag with Query inside Open </TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 <HR>
 <sql:dbOpen URL="jdbc:oracle:thin:@dlsun991:1521:816"
 user="scott" password="tiger">
 OracleJSP Extensions 5-29

Portable OracleJSP Programming Extensions
 <sql:dbQuery>
 select * from EMP
 </sql:dbQuery>
 </sql:dbOpen>
 <HR>
 </BODY>
 </HTML>

Example 3: Query with XML Output

<%@ page import="oracle.sql.*, oracle.jdbc.driver.*, oracle.jdbc.*, java.sql.*"
%>
<%@ taglib uri="/WEB-INF/jml.tld" prefix="jml" %>
<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>

<%
 String connStr=request.getParameter("connStr");
 if (connStr==null) {
 connStr=(String)session.getValue("connStr");
 } else {
 session.putValue("connStr",connStr);
 }
 if (connStr==null) { %>
<jsp:forward page="../setconn.jsp" />
<%
 }

%>
<jml:transform href="style/rowset.xsl" >
 <sql:dbOpen connId="conn1" URL="<%= connStr %>"
 user="scott" password="tiger">
 </sql:dbOpen>
 <sql:dbQuery connId="conn1" output="xml" queryId="myquery">
 select ENAME, EMPNO from EMP
 </sql:dbQuery>
 <sql:dbCloseQuery queryId="myquery" />
 <sql:dbClose connId="con1" />
</jml:transform>
5-30 JavaServer Pages Developer’s Guide and Reference

Portable OracleJSP Programming Extensions
Example 4: Result Set Iteration

<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>
 <HTML>
 <HEAD>
 <TITLE>Result Set Iteration Sample </TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 <HR>
 <sql:dbOpen connId="con1" URL="jdbc:oracle:thin:@dlsun991:1521:816"
 user="scott" password="tiger">
 </sql:dbOpen>
 <sql:dbQuery connId="con1" output="jdbc" queryId="myquery">
 select * from EMP
 </sql:dbQuery>
 <sql:dbNextRow queryId="myquery">
 <%= myquery.getString(1) %>
 </sql:dbNextRow>
 <sql:dbCloseQuery queryId="myquery" />
 <sql:dbClose connId="con1" />
 <HR>
 </BODY>
 </HTML>

Example 5: DDL and DML Statements This example uses an HTML form to let the user
specify what kind of DML or DDL statement to execute.

<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>
<HTML>
<HEAD><TITLE>DML Sample</TITLE></HEAD>
<FORM METHOD=get>
<INPUT TYPE="submit" name="drop" VALUE="drop table test_table">

<INPUT TYPE="submit" name="create"
 VALUE="create table test_table (col1 NUMBER)">

<INPUT TYPE="submit" name="insert"
 VALUE="insert into test_table values (1234)">

<INPUT TYPE="submit" name="select" VALUE="select * from test_table">

</FORM>
<BODY BGCOLOR="#FFFFFF">
Result:
 <HR>
 <sql:dbOpen URL="jdbc:oracle:thin:@dlsun991:1521:816"
 user="scott" password="tiger">
 <% if (request.getParameter("drop")!=null) { %>
 OracleJSP Extensions 5-31

Portable OracleJSP Programming Extensions
 <sql:dbExecute output="yes">
 drop table test_table
 </sql:dbExecute>
 <% } %>
 <% if (request.getParameter("create")!=null) { %>
 <sql:dbExecute output="yes">
 create table test_table (col1 NUMBER)
 </sql:dbExecute>
 <% } %>
 <% if (request.getParameter("insert")!=null) { %>
 <sql:dbExecute output="yes">
 insert into test_table values (1234)
 </sql:dbExecute>
 <% } %>
 <% if (request.getParameter("select")!=null) { %>
 <sql:dbQuery>
 select * from test_table
 </sql:dbQuery>
 <% } %>
 </sql:dbOpen>
 <HR>
</BODY>
</HTML>
5-32 JavaServer Pages Developer’s Guide and Reference

Oracle-Specific Programming Extensions
Oracle-Specific Programming Extensions
The OracleJSP extensions documented in this section are not portable to other JSP
environments. This includes the following:

■ event-handling through the Oracle JspScopeListener mechanism

■ support for SQLJ, a standard syntax for embedding SQL statements directly
into Java code

■ use of JDBC performance enhancement features

OracleJSP Event Handling—JspScopeListener
In standard servlet and JSP technology, only session-based events are supported.
OracleJSP extends this support through the JspScopeListener interface and
JspScopeEvent class in the oracle.jsp.event package. The OracleJSP
mechanism supports the four standard JSP scopes for event-handling for any Java
objects used in a JSP application:

■ page

■ request

■ session

■ application

For Java objects that are used in your application, implement the
JspScopeListener interface in the appropriate class, then attach objects of that
class to a JSP scope using tags such as jsp:useBean.

Notes:

■ For servlet 2.0 environments, OracleJSP provides non-portable
extensions through a mechanism called globals.jsa to
support a Web application framework. "OracleJSP Application
and Session Support for Servlet 2.0" on page 5-38 describes this
mechanism.

■ OracleJSP also provides extended (and non-portable)
globalization support, which is described in "OracleJSP
Extended Support for Multibyte Parameter Encoding" on
page 8-5.
 OracleJSP Extensions 5-33

Oracle-Specific Programming Extensions
When the end of a scope is reached, objects that implement JspScopeListener
and have been attached to the scope will be so notified. The OracleJSP container
accomplishes this by sending a JspScopeEvent instance to such objects through
the outOfScope() method specified in the JspScopeListener interface.

Properties of the JspScopeEvent object include the following:

■ the scope that is ending (one of the constants PAGE_SCOPE, REQUEST_SCOPE,
SESSION_SCOPE, or APPLICATION_SCOPE)

■ the container object that is the repository for objects at this scope (one of the
implicit objects page, request, session, or application)

■ the name of the object that the notification pertains to (the name of the instance
of the class that implements JspScopeListener)

■ the JSP implicit application object

The OracleJSP event listener mechanism significantly benefits developers who want
to always free object resources that are of page or request scope, regardless of
error conditions. It frees these developers from having to surround their page
implementations with Java try/catch/finally blocks.

For a complete sample, see "Page Using JspScopeListener—scope.jsp" on page 9-34.

OracleJSP Support for Oracle SQLJ
SQLJ is a standard syntax for embedding static SQL instructions directly in Java
code, greatly simplifying database-access programming. OracleJSP and the
OracleJSP translator support Oracle SQLJ, allowing you to use SQLJ syntax in JSP
statements. SQLJ statements are indicated by the #sql token.

For general information about Oracle SQLJ programming features, syntax, and
command-line options, see the Oracle9i SQLJ Developer’s Guide and Reference.

SQLJ JSP Code Example
Following is a sample SQLJ JSP page. (The page directive imports classes that are
typically required by SQLJ.)

<%@ page language="sqlj"
 import="sqlj.runtime.ref.DefaultContext,oracle.sqlj.runtime.Oracle" %>
<HTML>
<HEAD> <TITLE> The SQLJQuery JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">
<% String empno = request.getParameter("empno");
if (empno != null) { %>
5-34 JavaServer Pages Developer’s Guide and Reference

Oracle-Specific Programming Extensions
<H3> Employee # <%=empno %> Details: </H3>
<%= runQuery(empno) %>
<HR>

<% } %>
Enter an employee number:
<FORM METHOD="get">
<INPUT TYPE="text" NAME="empno" SIZE=10>
<INPUT TYPE="submit" VALUE="Ask Oracle");
</FORM>
</BODY>
</HTML>
<%!

private String runQuery(String empno) throws java.sql.SQLException {
 DefaultContext dctx = null;
 String ename = null; double sal = 0.0; String hireDate = null;
 StringBuffer sb = new StringBuffer();
 try {
 dctx = Oracle.getConnection("jdbc:oracle:oci8:@", "scott", "tiger");
 #sql [dctx] {
 select ename, sal, TO_CHAR(hiredate,’DD-MON-YYYY’)
 INTO :ename, :sal, :hireDate
 FROM scott.emp WHERE UPPER(empno) = UPPER(:empno)
 };
 sb.append("<BLOCKQUOTE><BIG><PRE>\n");
 sb.append("Name : " + ename + "\n");
 sb.append("Salary : " + sal + "\n");
 sb.append("Date hired : " + hireDate);
 sb.append("</PRE></BIG></BLOCKQUOTE>");
 } catch (java.sql.SQLException e) {
 sb.append("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
 } finally {
 if (dctx!= null) dctx.close();
 }
 return sb.toString();
}

%>

This example uses the JDBC OCI driver, which requires an Oracle client installation.
The Oracle class used in getting the connection is provided with Oracle SQLJ.
 OracleJSP Extensions 5-35

Oracle-Specific Programming Extensions
Entering employee number 7788 for the schema used in the example results in the
following output:

For further examples of using SQLJ in JSP pages, see "SQLJ
Queries—SQLJSelectInto.sqljsp and SQLJIterator.sqljsp" on page 9-39.

Notes:

■ In case a JSP page is invoked multiple times in the same JVM, it
is recommended that you always use an explicit connection
context, such as dctx in the example, instead of the default
connection context. (Note that dctx is a local method variable.)

■ OracleJSP requires Oracle SQLJ release 8.1.6.1 or higher.

■ In the future, OracleJSP will support language="sqlj" in a
page directive to trigger the Oracle SQLJ translator during JSP
translation. For forward compatibility, it is recommended as a
good programming practice that you begin using this directive
immediately.
5-36 JavaServer Pages Developer’s Guide and Reference

Oracle-Specific Programming Extensions
Triggering the SQLJ Translator
You can trigger the OracleJSP translator to invoke the Oracle SQLJ translator by
using the file name extension .sqljsp for the JSP source file.

This results in the OracleJSP translator generating a .sqlj file instead of a .java
file. The Oracle SQLJ translator is then invoked to translate the .sqlj file into a
.java file.

Using SQLJ results in additional output files; see "Generated Files and Locations
(On-Demand Translation)" on page 6-7.

Setting Oracle SQLJ Options
When you execute or pre-translate a SQLJ JSP page, you can specify desired Oracle
SQLJ option settings. This is true both in on-demand translation scenarios and
pre-translation scenarios, as follows:

■ In an on-demand translation scenario, use the OracleJSP sqljcmd
configuration parameter. This parameter, in addition to allowing you to specify
a particular SQLJ translator executable, allows you to set SQLJ command-line
options. (The sqljcmd parameter was not available prior to OracleJSP release
1.1.0.0.0.)

For information, see the sqljcmd description in "OracleJSP Configuration
Parameters (Non-OSE)" on page A-15. For how to set configuration parameters,
see "OracleJSP Configuration Parameter Settings" on page A-26.

■ In a pre-translation scenario with the ojspc pre-translation tool, use the ojspc
-S option. This option allows you to set SQLJ command-line options.

For information, see "Command-Line Syntax for ojspc" on page 6-30 and
"Option Descriptions for ojspc" on page 6-30.

Important:

■ To use Oracle SQLJ, you will have to install appropriate SQLJ
ZIP files (depending on your environment) and add them to
your classpath. See "Required and Optional Files for OracleJSP"
on page A-3.

■ Do not use the same base file name for a .jsp file and a
.sqljsp file in the same application, because they would
result in the same generated class name and .java file name.
 OracleJSP Extensions 5-37

OracleJSP Application and Session Support for Servlet 2.0
OracleJSP Application and Session Support for Servlet 2.0
OracleJSP defines a file, globals.jsa, as a mechanism for implementing the JSP
specification in a servlet 2.0 environment. Web applications and servlet contexts
were not fully defined in the servlet 2.0 specification.

This section discusses the globals.jsa mechanism and covers the following
topics:

■ Overview of globals.jsa Functionality

■ Overview of globals.jsa Syntax and Semantics

■ The globals.jsa Event Handlers

■ Global Declarations and Directives

For sample applications, see "Samples Using globals.jsa for Servlet 2.0
Environments" on page 9-43.

Overview of globals.jsa Functionality
Within any single Java virtual machine, you can use a globals.jsa file for each
application (or, equivalently, for each servlet context). This file supports the concept
of Web applications in the following areas:

■ application deployment—through its role as an application location marker to
define an application root

■ distinct applications and sessions—through its use by OracleJSP in providing
distinct servlet context and session objects for each application

■ application lifecycle management—through start and end events for sessions
and applications

The globals.jsa file also provides a vehicle for global Java declarations and JSP
directives across all JSP pages of an application.

Important: Use all lowercase for the globals.jsa file name.
Mixed case works in a non-case-sensitive environment, but makes
it difficult to diagnose resulting problems if you port the pages to a
case-sensitive environment.
5-38 JavaServer Pages Developer’s Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0
Application Deployment through globals.jsa
To deploy an OracleJSP application that does not incorporate servlets, copy the
directory structure into the Web server and create a file called globals.jsa to
place at the application root directory.

The globals.jsa file can be of zero size. The OracleJSP container will locate it,
and its presence in a directory defines that directory (as mapped from the URL
virtual path) as the root directory of the application.

OracleJSP also defines default locations for JSP application resources. For example,
application beans and classes in the application-relative /WEB-INF/classes and
/WEB-INF/lib directories will automatically be loaded by the OracleJSP
classloader without the need for specific configuration.

Distinct Applications and Sessions Through globals.jsa
The servlet 2.0 specification does not have a clearly defined concept of a Web
application and there is no defined relationship between servlet contexts and
applications, as there is in later servlet specifications. In a servlet 2.0 environment
such as Apache/JServ, there is only one servlet context object per JVM. A servlet 2.0
environment also has only one session object.

The globals.jsa file, however, provides support for multiple applications and
multiple sessions in a Web server, particularly for use in a servlet 2.0 environment.

Where a distinct servlet context object would not otherwise be available for each
application, the presence of a globals.jsa file for an application allows the
OracleJSP container to provide the application with a distinct ServletContext
object.

Additionally, where there would otherwise be only one session object (with either
one servlet context or across multiple servlet contexts), the presence of a
globals.jsa file allows the OracleJSP container to provide a proxy
HttpSession object to the application. This prevents the possibility of session
variable-name collisions with other applications, although unfortunately it cannot
protect application data from being inspected or modified by other applications.

Notes: For an application that does incorporate servlets, especially
in a servlet environment preceding the servlet 2.2 specification,
manual configuration is required as with any servlet deployment.
For servlets in a servlet 2.2 environment, you can include the
necessary configuration in the standard web.xml deployment
descriptor.
 OracleJSP Extensions 5-39

OracleJSP Application and Session Support for Servlet 2.0
This is because HttpSession objects must rely on the underlying servlet session
environment for some of their functionality.

Application and Session Lifecycle Management Through globals.jsa
An application must be notified when a significant state transition occurs. For
example, applications often want to acquire resources when an HTTP session begins
and release resources when the session ends, or restore or save persistent data when
the application itself is started or terminated.

In standard servlet and JSP technology, however, only session-based events are
supported.

For applications that use a globals.jsa file, OracleJSP extends this functionality
with the following four events:

■ session_OnStart

■ session_OnEnd

■ application_OnStart

■ application_OnEnd

You can write event handlers in the globals.jsa file for any of these events that
the server should respond to.

The session_OnStart event and session_OnEnd event are triggered at the
beginning and end of an HTTP session, respectively.

The application_OnStart event is triggered for any application by the first
request for that application within any single JVM. The application_OnEnd
event is triggered when the OracleJSP container unloads an application.

For more information, see "The globals.jsa Event Handlers" on page 5-43.

Overview of globals.jsa Syntax and Semantics
This section is an overview of general syntax and semantics for a globals.jsa
file.

Each event block in a globals.jsa file—a session_OnStart block, a
session_OnEnd block, an application_OnStart block, or an
application_OnEnd block—has an event start tag, an event end tag, and a body
(everything between the start and end tags) that includes the event-handler code.
5-40 JavaServer Pages Developer’s Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0
The following example shows this pattern:

<event:session_OnStart>
 <% This scriptlet contains the implementation of the event handler %>
</event:session_OnStart>

The body of an event block can contain any valid JSP tags—standard tags as well as
tags defined in a custom tag library.

The scope of any JSP tag in an event block, however, is limited to only that block.
For example, a bean that is declared in a jsp:useBean tag within one event block
must be redeclared in any other event block that uses it. You can avoid this
restriction, however, through the globals.jsa global declaration
mechanism—see "Global Declarations and Directives" on page 5-47.

For details about each of the four event handlers, see "The globals.jsa Event
Handlers" on page 5-43.

JSP implicit objects are available in globals.jsa event blocks as follows:

■ The application_OnStart block has access to the application object.

■ The application_OnEnd block has access to the application object.

■ The session_OnStart block has access to the application, session,
request, response, page, and out objects.

■ The session_OnEnd block has access to the application and session
objects.

Example of a Complete globals.jsa File This example shows you a complete
globals.jsa file, using all four event handlers.

<event:application_OnStart>

 <%-- Initializes counts to zero --%>
 <jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

Important: Static text as used in a regular JSP page can reside in a
session_OnStart block only. Event blocks for session_OnEnd,
application_OnStart, and application_OnEnd can contain
only Java scriptlets.
 OracleJSP Extensions 5-41

OracleJSP Application and Session Support for Servlet 2.0
</event:application_OnStart>

<event:application_OnEnd>

 <%-- Acquire beans --%>
 <jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <% application.log("The number of page hits were: " + pageCount.getValue()); %>
 <% application.log("The number of client sessions were: " + sessionCount.getValue()); %>

</event:application_OnEnd>

<event:session_OnStart>

 <%-- Acquire beans --%>
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <%
 sessionCount.setValue(sessionCount.getValue() + 1);
 activeSessions.setValue(activeSessions.getValue() + 1);
 %>

 Starting session #: <%=sessionCount.getValue() %>

 There are currently <%= activeSessions.getValue() %> active sessions <p>

</event:session_OnStart>

<event:session_OnEnd>

 <%-- Acquire beans --%>
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <%
 activeSessions.setValue(activeSessions.getValue() - 1);
 %>

</event:session_OnEnd>
5-42 JavaServer Pages Developer’s Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0
The globals.jsa Event Handlers
This section provides details about each of the four globals.jsa event handlers.

application_OnStart
The application_OnStart block has the following general syntax:

<event:application_OnStart>
 <% This scriptlet contains the implementation of the event handler %>
</event:application_OnStart>

The body of the application_OnStart event handler is executed when
OracleJSP loads the first JSP page in the application. This usually occurs when the
first HTTP request is made to any page in the application, from any client.
Applications use this event to initialize application-wide resources, such as a
database connection pool or data read from a persistent repository into application
objects.

The event handler must contain only JSP tags (including custom tags) and white
space—it cannot contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the OracleJSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

Example: application_OnStart The following application_OnStart example is
from the "globals.jsa Example for Application Events—lotto.jsp" on page 9-43. In
this example, the generated lottery numbers for a particular user are cached for an
entire day. If the user re-requests the picks, he or she gets the same set of numbers.
The cache is recycled once a day, giving each user a new set of picks. To function as
intended, the lotto application must make the cache persistent when the application
is being shut down, and must refresh the cache when the application is reactivated.

The application_OnStart event handler reads the cache from the lotto.che
file.

<event:application_OnStart>

<%
 Calendar today = Calendar.getInstance();
 application.setAttribute("today", today);
 try {
 OracleJSP Extensions 5-43

OracleJSP Application and Session Support for Servlet 2.0
 FileInputStream fis = new FileInputStream
 (application.getRealPath("/")+File.separator+"lotto.che");
 ObjectInputStream ois = new ObjectInputStream(fis);
 Calendar cacheDay = (Calendar) ois.readObject();
 if (cacheDay.get(Calendar.DAY_OF_YEAR) == today.get(Calendar.DAY_OF_YEAR)) {
 cachedNumbers = (Hashtable) ois.readObject();
 application.setAttribute("cachedNumbers", cachedNumbers);
 }
 ois.close();
 } catch (Exception theE) {
 // catch all -- can’t use persistent data
 }
%>

</event:application_OnStart>

application_OnEnd
The application_OnEnd block has the following general syntax:

<event:application_OnEnd>
 <% This scriptlet contains the implementation of the event handler %>
</event:application_OnEnd>

The body of the application_OnEnd event handler is executed when OracleJSP
unloads the JSP application. Unloading occurs whenever a previously loaded page
is reloaded after on-demand dynamic re-translation (unless the OracleJSP
unsafe_reload configuration parameter is enabled), or when the OracleJSP
container, which itself is a servlet, is terminated by having its destroy() method
called by the underlying servlet container. Applications use the
application_OnEnd event to clean up application level resources or to write
application state to a persistent store.

The event handler must contain only JSP tags (including custom tags) and white
space—it cannot contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the OracleJSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.
5-44 JavaServer Pages Developer’s Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0
Example: application_OnEnd The following application_OnEnd example is from
the "globals.jsa Example for Application Events—lotto.jsp" on page 9-43. In this
event handler, the cache is written to file lotto.che before the application is
terminated.

<event:application_OnEnd>

<%
 Calendar now = Calendar.getInstance();
 Calendar today = (Calendar) application.getAttribute("today");
 if (cachedNumbers.isEmpty() ||
 now.get(Calendar.DAY_OF_YEAR) > today.get(Calendar.DAY_OF_YEAR)) {
 File f = new File(application.getRealPath("/")+File.separator+"lotto.che");
 if (f.exists()) f.delete();
 return;
 }

 try {
 FileOutputStream fos = new FileOutputStream
 (application.getRealPath("/")+File.separator+"lotto.che");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(today);
 oos.writeObject(cachedNumbers);
 oos.close();
 } catch (Exception theE) {
 // catch all -- can’t use persistent data
 }
%>

</event:application_OnEnd>

session_OnStart
The session_OnStart block has the following general syntax:

<event:session_OnStart>
 <% This scriptlet contains the implementation of the event handler %>
 Optional static text...
</event:session_OnStart>

The body of the session_OnStart event handler is executed when OracleJSP
creates a new session in response to a JSP page request. This occurs on a per client
basis, whenever the first request is received for a session-enabled JSP page in an
application.
 OracleJSP Extensions 5-45

OracleJSP Application and Session Support for Servlet 2.0
Applications might use this event for the following purposes:

■ to initialize resources tied to a particular client

■ to control where a client starts in an application

Because the implicit out object is available to session_OnStart, this is the only
globals.jsa event handler that can contain static text in addition to JSP tags.

The session_OnStart event handler is called before the code of the JSP page is
executed. As a result, output from session_OnStart precedes any output from
the page.

The session_OnStart event handler and the JSP page that triggered the event
share the same out stream. The buffer size of this stream is controlled by the buffer
size of the JSP page. The session_OnStart event handler does not automatically
flush the stream to the browser—the stream is flushed according to general JSP
rules. Headers can still be written in JSP pages that trigger the session_OnStart
event.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the OracleJSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

Example: session_OnStart The following example makes sure that each new session
starts on the initial page (index.jsp) of the application.

<event:session_OnStart>

 <% if (!page.equals("index.jsp")) { %>
 <jsp:forward page="index.jsp" />
 <% } %>

</event:session_OnStart>

session_OnEnd
The session_OnEnd block has the following general syntax:

<event:session_OnEnd>
 <% This scriptlet contains the implementation of the event handler %>
</event:session_OnEnd>
5-46 JavaServer Pages Developer’s Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0
The body of the session_OnEnd event handler is executed when OracleJSP
invalidates an existing session. This occurs in either of the following circumstances:

■ The application invalidates the session by calling the
session.invalidate() method.

■ The session expires ("times out") on the server.

Applications use this event to release client resources.

The event handler must contain only JSP tags (including tag library tags) and white
space—it cannot contain static text.

Errors that occur in this event handler but are not processed in the event-handler
code are automatically trapped by the OracleJSP container and logged using the
servlet context of the application. Event handling then proceeds as if no error had
occurred.

Example: session_OnEnd The following example decrements the "active session"
count when a session is terminated.

<event:session_OnEnd>

 <%-- Acquire beans --%>
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

 <%
 activeSessions.setValue(activeSessions.getValue() - 1);
 %>

 </event:session_OnEnd>

Global Declarations and Directives
In addition to holding event handlers, a globals.jsa file can be used to globally
declare directives and objects for the JSP application. You can include JSP directives,
JSP declarations, JSP comments, and JSP tags that have a scope parameter (such as
jsp:useBean).

This section covers the following topics:

■ Global JSP Directives

■ globals.jsa Declarations
 OracleJSP Extensions 5-47

OracleJSP Application and Session Support for Servlet 2.0
■ Global JavaBeans

■ globals.jsa Structure

■ Global Declarations and Directives Example

Global JSP Directives
Directives used within a globals.jsa file serve a dual purpose:

■ They declare the information that is required to process the globals.jsa file
itself.

■ They establish default values for succeeding pages.

A directive in a globals.jsa file becomes an implicit directive for all JSP pages in
the application, although a globals.jsa directive can be overwritten for any
particular page.

A globals.jsa directive is overwritten in a JSP page on an attribute-by-attribute
basis. If a globals.jsa file has the following directive:

<%@ page import="java.util.*" bufferSize="10kb" %>

and a JSP page has the following directive:

<%@page bufferSize="20kb" %>

then this would be equivalent to the page having the following directive:

<%@ page import="java.util.*" bufferSize="20kb" %>

globals.jsa Declarations
If you want to declare a method or data member to be shared across any of the
event handlers in a globals.jsa file, use a JSP <%!... %> declaration within the
globals.jsa file.

Note that JSP pages in the application do not have access to these declarations, so
you cannot use this mechanism to implement an application library. Declaration
support is provided in the globals.jsa file for common functions to be shared
across event handlers.

Global JavaBeans
Probably the most common elements declared in globals.jsa files are global
objects. Objects declared in a globals.jsa file become part of the implicit object
5-48 JavaServer Pages Developer’s Guide and Reference

OracleJSP Application and Session Support for Servlet 2.0
environment of the globals.jsa event handlers and all the JSP pages in the
application.

An object declared in a globals.jsa file (such as by a jsp:useBean statement)
does not need to be redeclared in any of the individual JSP pages of the application.

You can declare a global object using any JSP tag or extension that has a scope
parameter, such as jsp:useBean or jml:useVariable. Globally declared objects
must be of either session or application scope (not page or request scope).

Nested tags are supported. Thus, a jsp:setProperty command can be nested in
a jsp:useBean declaration. (A translation error occurs if jsp:setProperty is
used outside a jsp:useBean declaration.)

globals.jsa Structure
When a global object is used in a globals.jsa event handler, the position of its
declaration is important. Only those objects that are declared before a particular
event handler are added as implicit objects to that event handler. For this reason,
developers are advised to structure their globals.jsa file in the following
sequence:

1. global directives

2. global objects

3. event handlers

4. globals.jsa declarations

Global Declarations and Directives Example
The sample globals.jsa file below accomplishes the following:

■ It defines the JML tag library (in this case, the compile-time implementation) for
the globals.jsa file, as well as for all subsequent pages.

By including the taglib directive in the globals.jsa file, the directive does
not have to be included in any of the individual JSP pages of the application.

■ It declares three application variables for use by all pages (in the jsp:useBean
statements).

For an additional example of using globals.jsa for global declarations, see
"globals.jsa Example for Global Declarations—index2.jsp" on page 9-49.
 OracleJSP Extensions 5-49

OracleJSP Application and Session Support for Servlet 2.0
<%-- Directives at the top --%>

 <%@ taglib uri="oracle.jsp.parse.OpenJspRegisterLib" prefix="jml" %>

<%-- Declare global objects here --%>

 <%-- Initializes counts to zero --%>
 <jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

<%-- Application lifecycle event handlers go here --%>

 <event:application_OnStart>
 <% This scriptlet contains the implementation of the event handler %>
 </event:application_OnStart>

 <event:application_OnEnd>
 <% This scriptlet contains the implementation of the event handler %>
 </event:application_OnEnd>

 <event:session_OnStart>
 <% This scriptlet contains the implementation of the event handler %>
 </event:session_OnStart>

 <event:session_OnEnd>
 <% This scriptlet contains the implementation of the event handler %>
 </event:session_OnEnd>

<%-- Declarations used by the event handlers go here --%>
5-50 JavaServer Pages Developer’s Guide and Reference

 JSP Translation and Deploy
6

JSP Translation and Deployment

This chapter primarily discusses considerations and procedures for deploying JSP
applications to the Oracle9i database or middle-tier database cache to run in the
Oracle9i Servlet Engine. It also describes general OracleJSP translation features and
briefly discusses deployment in other environments, particularly the Apache/JServ
environment used by the Oracle9i Application Server.

The following topics are covered:

■ Functionality of the OracleJSP Translator

■ Overview of Features and Logistics in Deployment to Oracle9i

■ Tools and Commands for Translation and Deployment to Oracle9i

■ Deployment to Oracle9i with Server-Side Translation

■ Deployment to Oracle9i with Client-Side Translation

■ Additional JSP Deployment Considerations
ment 6-1

Functionality of the OracleJSP Translator
Functionality of the OracleJSP Translator
JSP translators generate standard Java code for a JSP page implementation class.
This class is essentially a servlet class wrapped with features for JSP functionality.

This section discusses general functionality of the OracleJSP translator, focusing on
its behavior in on-demand translation environments such as Apache/JServ, which is
included with the Oracle9i Application Server. The following topics are covered:

■ Generated Code Features

■ Generated Package and Class Names (On-Demand Translation)

■ Generated Files and Locations (On-Demand Translation)

■ Sample Page Implementation Class Source

You must pre-translate JSP pages targeted for the Oracle9i Servlet Engine, either as a
result of running the session shell publishjsp command (for deployment with
server-side translation), by running the ojspc pre-translation tool directly (for
deployment with client-side translation), or by using Oracle WAR deployment. In
any case, there are some differences in functionality compared with the discussion
in this section, such as in placement of output files. See "Translating and Publishing
JSP Pages in Oracle9i (Session Shell publishjsp)" on page 6-46 and "The ojspc
Pre-Translation Tool" on page 6-26 for information about the first two scenarios. For
information about Oracle WAR deployment, see the Oracle9i Servlet Engine
Developer’s Guide.

Important: Implementation details in this section regarding
package and class naming, file and directory naming, output file
locations, and generated code are for illustrative purposes. The
precise details apply to OracleJSP 1.1.x releases only and are subject
to change from release to release.
6-2 JavaServer Pages Developer’s Guide and Reference

Functionality of the OracleJSP Translator
Generated Code Features
This section discusses general features of the page implementation class code that is
produced by the OracleJSP translator in translating JSP source (.jsp and .sqljsp
files).

Features of Page Implementation Class Code
When the OracleJSP translator generates servlet code in the page implementation
class, it automatically handles some of the standard programming overhead. For
both the on-demand translation model and the pre-translation model, generated
code automatically includes the following features:

■ It extends a wrapper class (oracle.jsp.runtime.HttpJsp) provided by the
OracleJSP container that implements the standard
javax.servlet.jsp.HttpJspPage interface (which extends the more
generic javax.servlet.jsp.JspPage interface, which in turn extends the
standard javax.servlet.Servlet interface).

■ It implements the _jspService() method specified by the HttpJspPage
interface. This method, often referred to generically as the "service" method, is
the central method of the page implementation class. Code from any Java
scriptlets and expressions in the JSP page is incorporated into this method
implementation.

■ It includes code to request an HTTP session, unless your JSP source code
specifically sets session=false (which can be done in a page directive).

For introductory information about key JSP and servlet classes and interfaces, see
Appendix B, "Servlet and JSP Technical Background".

Inner Class for Static Text
The service method, _jspService(), of the page implementation class includes
print commands—out.print() calls on the implicit out object—to print any
static text in the JSP page. The OracleJSP translator, however, places the static text
itself in an inner class within the page implementation class. The service method
out.print() statements reference attributes of the inner class to print the text.

This inner class implementation results in an additional .class file when the page
is translated and compiled. In a client-side pre-translation scenario (usually for
deployment to Oracle9i), be aware this means there is an extra .class file to
deploy.
 JSP Translation and Deployment 6-3

Functionality of the OracleJSP Translator
The name of the inner class will always be based on the base name of the .jsp file
or .sqljsp file. For mypage.jsp, for example, the inner class (and its .class
file) will always include "mypage" in its name.

General Conventions for Output Names
The OracleJSP translator follows a consistent set of conventions in naming output
classes, packages, files and directories (and, in the case of deployment to the
Oracle9i database or database cache, in naming schema paths). However, this set of
conventions and other implementation details may change from release to release.

One fact that is not subject to change is that the base name of a JSP page will be
included intact in output class and file names as long as it does not include special
characters. For example, translating MyPage123.jsp will always result in the
string "MyPage123" being part of the page implementation class name, Java source
file name, and class file name.

In OracleJSP release 1.1.2.x (as well as some previous releases), the base name is
preceded by an underscore ("_"). Translating MyPage123.jsp results in page
implementation class _MyPage123 in source file _MyPage123.java, which is
compiled into _MyPage123.class.

Similarly, where path names are used in creating Java package names (and schema
path names for Oracle9i), each component of the path is preceded by an underscore.
Translating /jspdir/myapp/MyPage123.jsp, for example, results in class
_MyPage123 being in the following package:

_jspdir._myapp

Note: The OracleJSP translator can optionally place the static text
in a Java resource file, which is advantageous for pages with large
amounts of static text. (See "Workarounds for Large Static Content
in JSP Pages" on page 4-16.) You can request this feature through
the OracleJSP external_resource configuration parameter for
on-demand translation, or the ojspc -extres option for
pre-translation. Enabling hotloading, in deployment to Oracle9i,
also results in the static text going into a resource file.

Even when static text is placed in a resource file, the inner class is
still produced, and its .class file must be deployed. (This is only
noteworthy if you are in a client-side pre-translation scenario.)
6-4 JavaServer Pages Developer’s Guide and Reference

Functionality of the OracleJSP Translator
The package name is used in creating directories for output .java and .class
files, so the underscores are also evident in output directory names. For example, in
translating a JSP page in the directory htdocs/test, the OracleJSP translator by
default will create directory htdocs/_pages/_test for the page implementation
class source.

If special characters are included in a JSP page name or path name, the OracleJSP
translator takes steps to ensure that no characters that would be illegal in Java
appear in the output class, package, and file names. For example, translating
My-name_foo12.jsp results in _My_2d_name__foo12 being the class name, in
source file _My_2d_name__foo12.java. The hyphen is converted to a string of
alpha-numeric characters. (An extra underscore is also inserted before "foo12".) In
this case, you can only be assured that alphanumeric components of the JSP page
name will be included intact in the output class and file names. For example, you
could search for "My", "name", or "foo12".

These conventions are demonstrated in examples provided later in this section and
later in this chapter.

Generated Package and Class Names (On-Demand Translation)
Although the Sun Microsystems JavaServer Pages Specification, Version 1.1 defines a
uniform process for parsing and translating JSP text, it does not describe how the
generated classes should be named—that is up to each JSP implementation.

This section describes how OracleJSP creates package and class names when it
generates code during translation.

Note: All output directories are created under the standard
_pages directory by default, as described in"Generated Files and
Locations (On-Demand Translation)" on page 6-7. You can change
this behavior, however, through the page_repository_root
configuration parameter, described in "OracleJSP Configuration
Parameters (Non-OSE)" on page A-15, or the ojspc -d and
-srcdir options, described in "Option Descriptions for ojspc" on
page 6-30.
 JSP Translation and Deployment 6-5

Functionality of the OracleJSP Translator
Package Naming
In an on-demand translation scenario, the URL path that is specified when the user
requests a JSP page—specifically, the path relative to the doc root or application
root—determines the package name for the generated page implementation class.
Each directory in the URL path represents a level of the package hierarchy.

It is important to note, however, that generated package names are always
lowercase, regardless of the case in the URL.

Consider the following URL as an example:

http://host[:port]/HR/expenses/login.jsp

In OracleJSP release 1.1.2.x, this results in the following package specification in the
generated code (implementation details are subject to change in future releases):

package _hr._expenses;

No package name is generated if the JSP page is at the doc root or application root
directory, where the URL is as follows:

http://host[:port]/login.jsp

Class Naming
The base name of the .jsp file (or .sqljsp file) determines the class name in the
generated code.

Consider the following URL example:

http://host[:port]/HR/expenses/UserLogin.jsp

In OracleJSP 1.1.2.x, this yields the following class name in the generated code
(implementation details are subject to change in future releases):

public class _UserLogin extends ...

Be aware that the case (lowercase/uppercase) that end users type in the URL must
match the case of the actual .jsp or .sqljsp file name. For example, they can
specify UserLogin.jsp if that is the actual file name, or userlogin.jsp if that is

Note: For information about general conventions used by
OracleJSP in naming output classes, packages, files, and schema
paths, see "General Conventions for Output Names" on page 6-4
6-6 JavaServer Pages Developer’s Guide and Reference

Functionality of the OracleJSP Translator
the actual file name, but not userlogin.jsp if UserLogin.jsp is the actual file
name.

In OracleJSP release 1.1.2.x, the translator determines the case of the class name
according to the case of the file name. For example:

■ UserLogin.jsp results in class _UserLogin.

■ Userlogin.jsp results in class _Userlogin.

■ userlogin.jsp results in class _userlogin.

If you care about the case of the class name, then you must name the .jsp file or
.sqljsp file accordingly. However, because the page implementation class is
invisible to the end user, this is usually not a concern.

Generated Files and Locations (On-Demand Translation)
This section describes files that are generated by the OracleJSP translator and where
they are placed. For pre-translation scenarios, ojspc places files differently and has
its own set of relevant options—see "Summary of ojspc Output Files, Locations, and
Related Options" on page 6-38.

The following subsections mention several OracleJSP configuration parameters. For
more information about them, see "OracleJSP Configuration Parameters (Non-OSE)"
on page A-15 and "OracleJSP Configuration Parameter Settings" on page A-26.

Files Generated by OracleJSP
This section considers both regular JSP pages (.jsp files) and SQLJ JSP pages
(.sqljsp files) in listing files that are generated by the OracleJSP translator. For the
file name examples, presume a file Foo.jsp or Foo.sqljsp is being translated.

Source files:

■ A.sqlj file is produced by the OracleJSP translator if the page is a SQLJ JSP
page (for example, _Foo.sqlj).

■ A .java file is produced for the page implementation class and inner class (for
example, _Foo.java). It is produced either directly by the OracleJSP translator
from the.jsp file, or by the SQLJ translator from the.sqlj file if the page is a

Note: For information about general conventions used by
OracleJSP in naming output classes, packages, files, and schema
paths, see "General Conventions for Output Names" on page 6-4
 JSP Translation and Deployment 6-7

Functionality of the OracleJSP Translator
SQLJ JSP page. (The currently installed Oracle SQLJ translator is used by
default, but you can specify an alternative translator or an alternative release of
the Oracle SQLJ translator by using the OracleJSP sqljcmd configuration
parameter.)

Binary files:

■ In the case of a SQLJ JSP page, one or more binary files are produced during
SQLJ translation for SQLJ profiles. By default these are .ser Java resource files,
but they will be .class files if you enable the SQLJ -ser2class option
(through the OracleJSP sqljcmd configuration parameter). The resource file or
.class file has "Foo" as part of its name.

■ A .class file is produced by the Java compiler for the page implementation
class. (The Java compiler is javac by default, but you can specify an alternative
compiler using the OracleJSP javaccmd configuration parameter.)

■ An additional .class file is produced for the inner class of the page
implementation class. This file will have "Foo" as part of its name.

■ A .res Java resource file is optionally produced for the static page content (for
example, _Foo.res) if the OracleJSP external_resource configuration
parameter is enabled.

Note: Discussion of SQLJ profiles assumes standard SQLJ code
generation. Oracle9i SQLJ provides an option, -codegen=oracle,
for Oracle-specific code generation, in which case no profiles are
produced.

Note: The exact names of generated files for the page
implementation class may change in future releases, but will still
have the same general form. The names would always include the
base name (such as "Foo" in these examples), but may include slight
variations.
6-8 JavaServer Pages Developer’s Guide and Reference

Functionality of the OracleJSP Translator
OracleJSP Translator Output File Locations
OracleJSP uses the Web server document repository to generate or load translated
JSP pages.

By default, the root directory is the Web server doc root directory (for
Apache/JServ) or the servlet context root directory of the application the page
belongs to.

You can specify an alternative root directory through the OracleJSP
page_repository_root configuration parameter.

In OracleJSP release 1.1.2.x, generated files are placed as follows (implementation
details may change in future releases):

■ If the .jsp (or .sqljsp) file is directly in the root directory, then OracleJSP
will place generated files into a default _pages subdirectory directly under the
root directory.

■ If the .jsp (or .sqljsp) file is in a subdirectory under the root directory, then
a parallel directory structure is created under the _pages subdirectory for the
generated files. Subdirectory names under the _pages directory are based on
subdirectory names under the root directory.

As an example, consider an Apache/JServ environment with an htdocs doc
root directory. If a .jsp file is in the following directory:

htdocs/subdir/test

then generated files will be placed in the following directory:

htdocs/_pages/_subdir/_test

Sample Page Implementation Class Source
This section uses an example to illustrate the information in the preceding sections.

Consider the following scenario:

■ JSP page code is in the file hello.jsp.

■ The page is executed in an Apache/JServ environment.

■ The hello.jsp file is located in the following directory:

htdocs/test
 JSP Translation and Deployment 6-9

Functionality of the OracleJSP Translator
Sample Page Source: hello.jsp
Following is the JSP code in hello.jsp:

<HTML>
<HEAD><TITLE>The Hello User JSP</TITLE></HEAD>
<BODY>
<% String user=request.getParameter("user"); %>
<H3>Welcome <%= (user==null) ? "" : user %>!</H3>
<P> Today is <%= new java.util.Date() %>. Have a nice day! :-)</P>
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

Sample: Generated Package and Class
Because hello.jsp is in the test subdirectory of the root directory (htdocs),
OracleJSP release 1.1.2.x generates the following package name in the page
implementation code:

package _test;

The Java class name is determined by the base name of the .jsp file (including
case), so the following class definition is generated in the page implementation
code:

public class _hello extends oracle.jsp.runtime.HttpJsp
{
 ...
}

(Because the page implementation class is invisible to the end user, the fact that its
name does not adhere to Java capitalization conventions is generally not a concern.)

Important: Code generation details discussed here are according
to Oracle’s implementation of the JSP 1.1 specification. Details may
change in the future, as the result of either changes in the
specification or changes in how Oracle implements aspects that are
not specified.
6-10 JavaServer Pages Developer’s Guide and Reference

Functionality of the OracleJSP Translator
Sample: Generated Files
Because hello.jsp is located as follows:

htdocs/test/hello.jsp

OracleJSP release 1.1.2.x generates output files as follows (the page implementation
class .java file and .class file, and the inner class .class file, respectively):

htdocs/_pages/_test/_hello.java
htdocs/_pages/_test/_hello.class
htdocs/_pages/_test/_hello$__jsp_StaticText.class

Sample Page Implementation Code: _hello.java
Following is the generated page implementation class Java code (_hello.java), as
generated by OracleJSP release 1.1.2.x:

package _test;

import oracle.jsp.runtime.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import java.io.*;
import java.util.*;
import java.lang.reflect.*;
import java.beans.*;

public class _hello extends oracle.jsp.runtime.HttpJsp {

 public final String _globalsClassName = null;

 // ** Begin Declarations

 // ** End Declarations

Note: These file names are based specifically on the OracleJSP
1.1.2.x implementation; the exact details may change in future
releases. All file names will always include the base "hello",
however.
 JSP Translation and Deployment 6-11

Functionality of the OracleJSP Translator
 public void _jspService(HttpServletRequest request, HttpServletResponse
response) throws IOException, ServletException {

 /* set up the intrinsic variables using the pageContext goober:
 ** session = HttpSession
 ** application = ServletContext
 ** out = JspWriter
 ** page = this
 ** config = ServletConfig
 ** all session/app beans declared in globals.jsa
 */
 JspFactory factory = JspFactory.getDefaultFactory();
 PageContext pageContext = factory.getPageContext(this, request, response,
null, true, JspWriter.DEFAULT_BUFFER, true);
 // Note: this is not emitted if the session directive == false
 HttpSession session = pageContext.getSession();
 if (pageContext.getAttribute(OracleJspRuntime.JSP_REQUEST_REDIRECTED,
PageContext.REQUEST_SCOPE) != null) {
 pageContext.setAttribute(OracleJspRuntime.JSP_PAGE_DONTNOTIFY, "true",
PageContext.PAGE_SCOPE);
 factory.releasePageContext(pageContext);
 return;
}
 ServletContext application = pageContext.getServletContext();
 JspWriter out = pageContext.getOut();
 hello page = this;
 ServletConfig config = pageContext.getServletConfig();

 try {
 // global beans
 // end global beans

 out.print(__jsp_StaticText.text[0]);
 String user=request.getParameter("user");
 out.print(__jsp_StaticText.text[1]);
 out.print((user==null) ? "" : user);
 out.print(__jsp_StaticText.text[2]);
 out.print(new java.util.Date());
 out.print(__jsp_StaticText.text[3]);

 out.flush();

 }
 catch(Exception e) {
6-12 JavaServer Pages Developer’s Guide and Reference

Functionality of the OracleJSP Translator
 try {
 if (out != null) out.clear();
 }
 catch(Exception clearException) {
 }
 pageContext.handlePageException(e);
 }
 finally {
 if (out != null) out.close();
 factory.releasePageContext(pageContext);
 }

 }
 private static class __jsp_StaticText {
 private static final char text[][]=new char[4][];
 static {
 text[0] =
 "<HTML>\r\n<HEAD><TITLE>The Welcome User
JSP</TITLE></HEAD>\r\n<BODY>\r\n".toCharArray();
 text[1] =
 "\r\n<H3>Welcome ".toCharArray();
 text[2] =
 "!</H3>\r\n<P> Today is ".toCharArray();
 text[3] =
 ". Have a nice day! :-)</P>\r\nEnter name:\r\n<FORM
METHOD=get>\r\n<INPUT TYPE=\"text\" NAME=\"user\" SIZE=15>\r\n<INPUT
TYPE=\"submit\" VALUE=\"Submit
name\">\r\n</FORM>\r\n</BODY>\r\n</HTML>".toCharArray();
 }
 }
}

 JSP Translation and Deployment 6-13

Overview of Features and Logistics in Deployment to Oracle9i
Overview of Features and Logistics in Deployment to Oracle9i
This section is an overview of considerations and logistics in deploying a JSP
application into Oracle9i to run in the Oracle9i Servlet Engine. The following topics
are covered:

■ Database Schema Objects for Java

■ Oracle HTTP Server as a Front-End Web Server

■ URLs for the Oracle9i Servlet Engine

■ Static Files for JSP Applications in the Oracle9i Servlet Engine

■ Server-Side Versus Client-Side Translation

■ Overview of Hotloaded Classes in Oracle9i

Database Schema Objects for Java
Java code that executes in the Oracle9i Servlet Engine in the Oracle9i database or
database cache uses the Oracle JVM. The code must be loaded into a particular
Oracle9i schema as one or more schema objects.

The three kinds of schema objects for Java are:

■ source schema objects (corresponding to Java source files)

■ class schema objects (corresponding to Java class files)

■ resource schema objects (corresponding to Java resource files)

Each schema object is an individual library unit. When you query the
ALL_OBJECTS table of the schema, Java schema objects are seen as type JAVA
SOURCE, JAVA CLASS, or JAVA RESOURCE, respectively.

See the Oracle9i Java Developer’s Guide for more information.

Loading Java Files to Create Schema Objects
The Oracle9i loadjava tool is used to load Java files into Oracle9i as schema
objects. (See "Overview of the loadjava Tool" on page 6-40.)

When you compile on the client and load the .class file directly, loadjava stores
the .class file as a class schema object in Oracle9i.

When you load a resource file (such as a .res file for static JSP content or .ser
profile file for SQLJ), loadjava stores the resource file as a resource schema object
in Oracle9i.
6-14 JavaServer Pages Developer’s Guide and Reference

Overview of Features and Logistics in Deployment to Oracle9i
When you load a .java (or .sqlj) source file, loadjava stores the source file as a
source schema object in Oracle9i and compiles it inside the database (or database
cache) to create one or more class schema objects.

When you load a .jsp or .sqljsp page source file (for server-side translation),
loadjava stores the page source as a resource schema object. During server-side
translation (through the Oracle9i session shell publishjsp command), server-side
loadjava is invoked automatically to create source schema objects, class schema
objects, and resource schema objects during translation and compilation.

(See "Tools and Commands for Translation and Deployment to Oracle9i" on
page 6-26 for an overview of the loadjava and session shell tools.)

Schema Object Full Names and Short Names
The two forms of schema object names in Oracle9i are full names and short names.

Full names are fully qualified and are used as the schema object names wherever
possible. If any full name contains more than 31 characters, however, or contains
characters that are illegal or cannot be converted to characters in the database
character set, then Oracle9i converts the full name to a short name to employ as the
name of the schema object, keeping track of both names and how to convert
between them. If the full name contains 31 characters or less and has no illegal or
inconvertible characters, then the full name is used as the schema object name.

For more information about these and about other file naming considerations,
including DBMS_JAVA procedures to retrieve a full name from a short name and a
short name from a full name, see the Oracle9i Java Developer’s Guide.

Java Schema Object Package Determination During Loading
During loading of Java files into Oracle9i, the loadjava tool uses the following
logic to determine the package for Java schema objects it creates:

■ For source schema objects (created from.java and .sqlj files) and class
schema objects (created from .class files or by compiling .java files), the
schema package is determined by any package information in the Java code.

For example, a class Foo that specifies the package pkg1.pkg2 and is being
loaded into the SCOTT schema will be stored in the schema as follows:

SCOTT:pkg1/pkg2/Foo
 JSP Translation and Deployment 6-15

Overview of Features and Logistics in Deployment to Oracle9i
■ For resource schema objects (created from .res and .ser Java resource files,
for example), the schema package is determined by any path information in the
loadjava command line (if the Java resource file is being loaded directly) or
the JAR file (if the Java resource file is being loaded as part of a JAR file).

For example, a .res file being loaded into the SCOTT schema as
pkg3/pkg4/abcd.res will be stored in a schema object as follows:

SCOTT:pkg3/pkg4/abcd.res

Publishing Schema Objects
Any JSP page (or servlet) that will run in the Oracle9i Servlet Engine must be
"published", a process that makes its executable Java code (the class schema objects)
accessible through entries in the Oracle9i JNDI namespace.

Publishing the JSP page links its page implementation class schema object to a
servlet path (and optionally to a non-default servlet context path). The servlet path
(and context path, if applicable) becomes part of the URL that an end user would
specify to access and execute the page. See "URLs for the Oracle9i Servlet Engine"
on page 6-17 for more information.

To publish a JSP page, use the Oracle9i session shell publishjsp command for the
"deployment with server-side translation" scenario, or the session shell
publishservlet command for the "deployment with client-side translation"
scenario. See "Translating and Publishing JSP Pages in Oracle9i (Session Shell
publishjsp)" on page 6-46 or "Publishing Translated JSP Pages in Oracle9i (Session
Shell publishservlet)" on page 6-69.

Oracle HTTP Server as a Front-End Web Server
JSP pages and servlets running in the Oracle9i Servlet Engine are typically accessed
through the Oracle HTTP Server, powered by Apache, and its mod_ose module. It
is possible, however, to use OSE itself as the Web server.

For more information about the role of the Oracle HTTP Server and mod_ose, see
"Role of the Oracle HTTP Server, Powered by Apache" on page 2-6.

Note: When pre-translating a JSP page with the ojspc tool (for
deployment to Oracle9i with client-side translation), you can
specify the package of the generated .java file through the ojspc
-packageName option.
6-16 JavaServer Pages Developer’s Guide and Reference

Overview of Features and Logistics in Deployment to Oracle9i
URLs for the Oracle9i Servlet Engine
This section describes how URLs are formed for servlets and JSP pages that will run
in the Oracle9i Servlet Engine.

Context Path and Servlet Path
As with servlet URLs in general, URLs to invoke JSP pages running in the Oracle9i
Servlet Engine are formed by a combination of two components in addition to the
hostname and port:

■ the context path of the servlet context in OSE, as determined when the servlet
context was created

■ the servlet path of the JSP page in OSE, as determined when the JSP page was
published

The servlet path is often referred to as the "virtual path" and is determined by the
-virtualpath option when you publish a servlet or JSP page. Be aware, however,
that it is the context path that is determined through the -virtualpath option
when a servlet context is created. Do not confuse the servlet path "virtual path" and
the context path "virtual path".

For every OSE Web domain there is a default context,
/domain_name/contexts/default (where domain_name represents the name
of the particular domain). The context path for any OSE default context is simply:

/

The context path for any other OSE servlet context you create, which you
accomplish using the Oracle9i session shell createcontext command, is
whatever you specify in the createcontext -virtualpath option. It is
conventional, but not required, to specify that the context path be the same as the
context name. (The -virtualpath option is required whenever you execute the
createcontext command.)
 JSP Translation and Deployment 6-17

Overview of Features and Logistics in Deployment to Oracle9i
For general information about the session shell createcontext command, see the
Oracle9i Java Tools Reference. For an overview of the Oracle9i session shell, see
"Overview of the sess_sh Session Shell Tool" on page 6-42.

The servlet path (JSP page "virtual path") is determined by how you publish the JSP
page, as follows:

■ If you use the session shell publishjsp command (for server-side translation),
then it is determined by the publishjsp -virtualpath option, or is the
same as the specified schema path by default.

■ If you use the session shell publishservlet command (after client-side
translation), then it is determined by the publishservlet -virtualpath
option (which you must specify when you use publishservlet for a JSP
page).

See "Translating and Publishing JSP Pages in Oracle9i (Session Shell publishjsp)" on
page 6-46 or "Publishing Translated JSP Pages in Oracle9i (Session Shell
publishservlet)" on page 6-69.

OSE Ports
Each OSE Web service has a port associated with it, which an end user must specify
as part of the URL if the OSE default Web service (admin) is not being used:

http://host[:port]/path

In this syntax, path is the combination of the context path and servlet path.

The port for the default admin Web service is 8080. The port for any other Web
service is determined using the session shell tool addendpoint command. (See
"Overview of the sess_sh Session Shell Tool" on page 6-42 for general information
about the tool. See the Oracle9i Java Tools Reference for information about the
addendpoint command.)

Notes: For purposes of the discussion here and elsewhere in this
chapter, assume OSE single-domain mode. In this case, there is just
one domain per Web service. For information about single-domain
mode versus multi-domain mode and how this would affect the
URL, see the Oracle9i Servlet Engine Developer’s Guide.
6-18 JavaServer Pages Developer’s Guide and Reference

Overview of Features and Logistics in Deployment to Oracle9i
OSE scottService
A Makefile is provided with Oracle9i to create an OSE Web service called
scottService. The domain is /scottRoot, the default context is
/scottRoot/contexts/default, and an additional context,
/scottRoot/contexts/scottContext, is also created automatically. (Note that
these are JNDI names only and are not directly related to URLs.)

The context path for the default context is:

/

The context path for scottContext is:

/ose

The scottService port number is 8088.

The scottRoot servlet contexts will be used in the examples in the next section
and elsewhere in this chapter.

URL Examples
This section provides examples of OSE URLs, using servlet contexts of
scottService as described immediately above.

Example 1 As an example, consider a JSP page that is published to the
scottService default context with a servlet path (virtual path), as follows:

mydir/mypage.jsp

This page is accessed as follows:

http://host:8088/mydir/mypage.jsp

You can access it from another page in the application, say mydir/mypage2.jsp,
in either of the following ways (the first is a page-relative path; the second is an
application-relative path):

<jsp:include page="mypage.jsp" flush="true" />

<jsp:include page="/mydir/mypage.jsp" flush="true" />
 JSP Translation and Deployment 6-19

Overview of Features and Logistics in Deployment to Oracle9i
Example 2 Now consider the scottContext servlet context, created as follows ($ is
the session shell prompt):

$ createcontext -virtualpath /ose /scottRoot scottContext

This does the following:

■ It specifies the domain /scottRoot.

■ It creates the servlet context /scottRoot/contexts/scottContext (all
servlet contexts in OSE go under /domain_name/contexts).

■ It specifies /ose as the context path.

If mydir/mypage.jsp is published to the scottContext servlet context, it is
accessed as follows:

http://host:8088/ose/mydir/mypage.jsp

(Note that /scottRoot and /scottRoot/contexts/scottContext are JNDI
names only and are not related to the URL. It is the context path that is relevant to
the URL.)

You can access the page from another page in the application, say
mydir/mypage2.jsp, in either of the following ways (the first is a page-relative
path; the second is an application-relative path):

<jsp:include page="mypage.jsp" flush="true" />

<jsp:include page="/mydir/mypage.jsp" flush="true" />

The syntax for the dynamic jsp:include statements is the same as in Example 1.
Even though a different servlet context is used, the path of the pages relative to the
context is unchanged.

Static Files for JSP Applications in the Oracle9i Servlet Engine
This section describes the required placement of static files, such as HTML files, that
are used in a JSP application that runs in the Oracle9i Servlet Engine (with OSE
being used as its own Web server).

Files for Dynamic Includes and Forwards
Static files that are dynamic include or forward targets (jsp:include or
jsp:forward) in a JSP application running in the Oracle9i Servlet Engine must be
manually moved or copied to the OSE doc root directory corresponding to the
6-20 JavaServer Pages Developer’s Guide and Reference

Overview of Features and Logistics in Deployment to Oracle9i
servlet context of the application. When you create an OSE servlet context, using the
session shell createcontext command, you specify a doc root directory through
the createcontext -docroot option. Each OSE doc root directory is linked to
the Oracle9i JNDI namespace. (For more information about the session shell
createcontext command, see the Oracle9i Java Tools Reference.)

OSE doc root directories are outside the database (or database cache). The JNDI
lookup mechanism for static files is a front-end for the file system of the server on
which the database resides.

Files for Static Includes
Any file that is statically included (through an include directive) by a JSP page,
whether it is another JSP page or a static file such as an HTML file, must be
accessible by the OracleJSP translator during translation.

In the case of a JSP application targeted for OSE, there are three translation
scenarios:

■ server-side translation

This is where you load a .jsp file into Oracle9i as a Java resource, then use
publishjsp to invoke the OracleJSP translator in the server. (See "Deployment
to Oracle9i with Server-Side Translation" on page 6-45.)

In this case, static files must be loaded beforehand, using loadjava, as
resource schema objects.

Notes:

■ If you are migrating your JSP application from Apache to OSE,
any static files that will be dynamic include or forward
targets should be copied from the Apache doc root to the OSE
servlet context doc root, as opposed to mapping the OSE servlet
context doc root to the Apache doc root. Mapping the doc roots
may ultimately cause confusion.

■ The OSE default service, admin, has the following default
servlet context:

/system/admin/contexts/default

■ The default servlet context has the following doc root:

$ORACLE_HOME/jis/public_html
 JSP Translation and Deployment 6-21

Overview of Features and Logistics in Deployment to Oracle9i
■ client-side translation

This is where you translate a .jsp file on the client using ojspc and load the
generated components into Oracle9i.

In this case, static files do not have to be in the server at all. They only have to
be accessible by ojspc on the client during translation. (For application-relative
static include directives, see the discussion of the ojspc -appRoot option
under "Option Descriptions for ojspc" on page 6-30.)

■ Oracle WAR deployment

See the Oracle9i Servlet Engine Developer’s Guide for information, or "WAR
Deployment" on page 6-77 for an overview.

Server-Side Versus Client-Side Translation
Developers who are deploying their JSP pages to Oracle9i to run in the Oracle9i
Servlet Engine can translate either in the server or on the client.

Deployment with server-side translation requires two steps:

1. Run loadjava to load the JSP page source (.jsp or .sqljsp file) into
Oracle9i as a resource schema object. (You must also load any required Java
classes or other required JSP pages.)

2. Run the session shell publishjsp command. This will automatically
accomplish the following:

■ The JSP page source is translated into Java code for the page
implementation class (first producing a SQLJ source file and invoking the
SQLJ translator in the case of a SQLJ JSP page).

■ The Java code is compiled into one or more class files.

■ The page implementation class is optionally hotloaded (if you specified the
publishjsp -hotload option).

■ The page implementation class is published as a servlet for execution in
Oracle9i.

This step also produces source schema objects, class schema objects, and
resource schema objects for all generated .java files (and .sqlj files for
.sqljsp pages), .class files, and resource files, respectively.

See "Deployment to Oracle9i with Server-Side Translation" on page 6-45 for more
information.
6-22 JavaServer Pages Developer’s Guide and Reference

Overview of Features and Logistics in Deployment to Oracle9i
Deployment with client-side translation requires three, or optionally four, steps:

1. Run the OracleJSP pre-translation tool, ojspc. This accomplishes the following:

■ The JSP page source is translated into Java code for the page
implementation class. (In the case of a SQLJ JSP page, ojspc first produces
a SQLJ source file then invokes the SQLJ translator to produce Java code.)

■ A Java resource file is optionally produced for static text, depending on the
ojspc -extres and -hotload options.

■ The Java code is compiled into its class files.

2. Run the Oracle9i loadjava utility to load the class files and any resource files
into Oracle9i as class schema objects and resource schema objects.

3. Optionally hotload the classes (if you enabled the ojspc -hotload option
during translation) by using the Oracle9i session shell java command to
execute the main() method of the page implementation class.

4. Run the session shell publishservlet command to publish the page
implementation classes for execution in Oracle9i.

See "Deployment to Oracle9i with Client-Side Translation" on page 6-59 for more
information.

If you are using Oracle JDeveloper, you may find it more convenient to translate on
the client using the OracleJSP translator provided with JDeveloper and then deploy
the resulting classes and resources, as in steps 2, 3, and 4.

If you are not using JDeveloper, however, translating in the server is likely to be
more convenient, because the session shell publishjsp command combines
translation, optional hotloading, and publishing into a single step.

In addition, either of the following situations may dictate the need to translate in
the server:

■ if required libraries are not available on the client

■ if you want to compile against the exact set of classes that will be used at
runtime

Note: Another possible scenario is to use Oracle WAR
deployment. See the Oracle9i Servlet Engine Developer’s Guide for
information, or "WAR Deployment" on page 6-77 for an overview.
 JSP Translation and Deployment 6-23

Overview of Features and Logistics in Deployment to Oracle9i
Overview of Hotloaded Classes in Oracle9i
Oracle9i offers a feature known as hotloading classes for more efficient use of
static final variables (constants). This becomes relevant whenever the
hotloaded classes might be used by multiple concurrent users.

A separate JVM is invoked for each Oracle9i session created in Java. Normally each
session gets its own copy of all static final variables in its session space or, in
the case of literal strings, in a hashtable known as the intern table in shared memory.
Use of literal strings in the intern table is synchronized across sessions.

The processing of literal strings is especially relevant to JSP pages. By default
(without hotloading), the static text in a JSP page is ultimately represented as literal
strings.

Enabling and Accomplishing Hotloading
The ability to hotload a JSP page is enabled during translation, through the ojspc
-hotload option (for client-side translation) or the publishjsp -hotload option
(for server-side translation).

Enabling the -hotload option directs the OracleJSP translator to do the following:

■ It generates code in the page implementation class to allow hotloading, by
creating a hotloading method and a main() method that invokes the
hotloading method.

■ It writes static text to a Java resource file. (Otherwise, static text is written to an
inner class of the page implementation class.)

The hotloading itself is accomplished as follows:

■ For deployment with client-side translation, you must hotload as an extra
deployment step. After translating with the ojspc -hotload option enabled
and loading the page class and static resources into Oracle9i, and before
invoking publishservlet to publish the page, you must use the session shell
java command to invoke the main() method of the page implementation
class. Details of the process are discussed in "Deployment to Oracle9i with
Client-Side Translation" on page 6-59.

Note: This section refers to the OracleJSP pre-translation tool
(ojspc), the Oracle session shell tool (sess_sh), and the session
shell publishjsp command. For an overview of these tools, see
"Tools and Commands for Translation and Deployment to Oracle9i"
on page 6-26.
6-24 JavaServer Pages Developer’s Guide and Reference

Overview of Features and Logistics in Deployment to Oracle9i
■ For deployment with server-side translation, hotloading is accomplished
automatically as part of publishjsp functionality when you enable the
publishjsp -hotload option.

The act of hotloading a page implementation class, either directly through the
session shell java command or indirectly through the publishjsp command,
actually just makes the inner class static text shareable among multiple JVMs in
Oracle9i.

Features and Advantages of Hotloading
Hotloading classes results in the following logistical features and advantages:

■ The translator generates code to read the Java resource containing the static text
in static initializers, to initialize the char arrays representing static text.

■ During hotloading, each hotloaded inner class is initialized only once, and static
JSP text is converted into static Java char arrays only once.

These char arrays, instead of being stored in the synchronized intern table, are
stored elsewhere in a global area that is shared across all sessions without
synchronization (which is feasible because of the knowledge that none of the
variables will change).

Hotloading, by avoiding synchronization and other costly overhead, can
significantly improve the runtime performance and scalability of JSP pages
executed in the Oracle9i Servlet Engine. Furthermore, when a hotloaded class is
referenced, the class initializer is not rerun. The session has instant access to the
literal strings and other static final variables.

In addition to allowing better performance of individual JSP pages, hotloading
reduces overall CPU usage of the server.

Note: JSP pages that will not be used by multiple users
concurrently, or small JSP pages with few literal strings, may have
little or no performance improvement from hotloading.
 JSP Translation and Deployment 6-25

Tools and Commands for Translation and Deployment to Oracle9i
Tools and Commands for Translation and Deployment to Oracle9i
Oracle provides the following tools to use, as applicable, in translating JSP pages
and deploying them to Oracle9i. How they are implemented depends on your
operating system (such as shell scripts for Solaris or .bat files for Windows NT):

■ ojspc (OracleJSP pre-translation tool)

■ loadjava (tool for loading JSP pages or Java files into the Oracle9i database or
database cache)

■ sess_sh (Oracle9i session shell tool)

Deployment with client-side translation requires all three tools. Pre-translate JSP
pages on the client using ojspc, load the translated pages into Oracle9i using
loadjava, and publish them using the session shell publishservlet command.

Deployment with server-side translation does not require ojspc. Load the
untranslated JSP pages into Oracle9i using loadjava, then translate and publish
them using the session shell publishjsp command.

The loadjava and sess_sh tools are general-purpose tools for the Oracle9i Java
environment; ojspc is for JSP pages only.

The ojspc Pre-Translation Tool
The first step in deploying a JSP application to Oracle9i with client-side translation
is to run the OracleJSP pre-translation tool, ojspc.

You will then use loadjava, introduced in the next section, to load the resulting
.class files and resource files (if any) into Oracle9i as class schema objects and
resource schema objects, respectively.

The following topics are covered here:

■ Overview of ojspc Functionality

Notes:

■ Another tool, the Oracle9i Accelerator, is relevant if you want
to natively compile your application to run in Oracle9i. This
tool, invoked as ncomp, is documented in the Oracle9i Java Tools
Reference.

■ The tools discussed in this section are located in the
[ORACLE_HOME]/bin directory.
6-26 JavaServer Pages Developer’s Guide and Reference

Tools and Commands for Translation and Deployment to Oracle9i
■ Option Summary Table for ojspc

■ Command-Line Syntax for ojspc

■ Option Descriptions for ojspc

■ Summary of ojspc Output Files, Locations, and Related Options

Overview of ojspc Functionality
For a simple JSP (not SQLJ JSP) page, default functionality for ojspc is as follows:

■ It takes a .jsp file as an argument.

■ It invokes the OracleJSP translator to translate the .jsp file into Java page
implementation class code, producing a .java file. The page implementation
class includes an inner class for static page content.

■ It invokes the Java compiler to compile the .java file, producing two .class
files (one for the page implementation class itself and one for the inner class).

And following is the default ojspc functionality for a SQLJ JSP page:

■ It takes a .sqljsp file as an argument instead of a .jsp file.

■ It invokes the OracleJSP translator to translate the .sqljsp file into a .sqlj
file for the page implementation class (and inner class).

■ It invokes the Oracle SQLJ translator to translate the .sqlj file. This produces a
.java file for the page implementation class (and inner class) and a SQLJ
"profile" file that is, by default, a .ser Java resource file.

For information about SQLJ profiles and Oracle-specific code generation, see
the Oracle9i SQLJ Developer’s Guide and Reference.

Notes: There are other possible scenarios, such as in a middle-tier
environment, for using ojspc to pre-translate JSP pages. See "Use
of ojspc for Pre-Translation for Non-OSE Environments" on
page 6-74.

Note: Discussion of SQLJ profiles assumes standard SQLJ code
generation. Oracle9i SQLJ provides an option, -codegen=oracle,
for Oracle-specific code generation, in which case no profiles are
produced.
 JSP Translation and Deployment 6-27

Tools and Commands for Translation and Deployment to Oracle9i
■ It invokes the Java compiler to compile the .java file, producing two .class
files (one for the page implementation class itself and one for the inner class).

Under some circumstances (see the -hotload and -extres option descriptions
below), ojspc options direct the OracleJSP translator to produce a .res Java
resource file for static page content instead of putting this content into the inner
class of the page implementation class. However, the inner class is still created and
must still be deployed with the page implementation class.

Because ojspc invokes the OracleJSP translator, ojspc output conventions are the
same as for OracleJSP in general, as applicable. For general information about
OracleJSP translator output, including generated code features, general conventions
for output names, generated package and class names, and generated files and
locations, see "Functionality of the OracleJSP Translator" on page 6-2.

Option Summary Table for ojspc
Table 6–1 describes the options supported by the ojspc pre-translation utility.
These options are further discussed in "Option Descriptions for ojspc" on page 6-30.

The second column notes comparable or related OracleJSP configuration
parameters for on-demand translation environments (such as Apache/JServ).

Note: The ojspc command-line tool is a front-end utility that
invokes the oracle.jsp.tool.Jspc class.

Note: A boolean ojspc option is enabled by typing only the
option name, not by setting it to true. Setting it to true will cause
an error.

Table 6–1 Options for ojspc Pre-Translation Utility

Option

Related OracleJSP
Configuration
Parameters Description Default

-addclasspath classpath (related, but
with different
functionality)

additional classpath entries for
javac

empty (no
additional
path entries)

-appRoot n/a application root directory for
application-relative static
include directives from the
page

current
directory
6-28 JavaServer Pages Developer’s Guide and Reference

Tools and Commands for Translation and Deployment to Oracle9i
-debug emit_debuginfo boolean to direct ojspc to
generate a line map to the
original .jsp file for debugging

false

-d page_repository_root location where ojspc should
place generated binary files
(.class and resource)

current
directory

-extend n/a class for the generated page
implementation class to extend

empty

-extres external_resource boolean to direct ojspc to
generate an external resource file
for static text from the .jsp file

false

-hotload
(for OSE only)

n/a boolean to direct ojspc to
implement code in the page
implementation class to allow
hotloading

false

-implement n/a interface for the generated page
implementation class to
implement

empty

-noCompile javaccmd boolean to direct ojspc not to
compile the generated page
implementation class

false

-packageName n/a package name for the generated
page implementation class

empty
(generate
package
names per
.jsp file
location)

-S-<sqlj option> sqljcmd -S prefix followed by an Oracle
SQLJ option (for .sqljsp files)

empty

-srcdir page_repository_root location where ojspc should
place generated source files
(.java and .sqlj)

current
directory

-verbose n/a boolean to direct ojspc to print
status information as it executes

false

Table 6–1 Options for ojspc Pre-Translation Utility (Cont.)

Option

Related OracleJSP
Configuration
Parameters Description Default
 JSP Translation and Deployment 6-29

Tools and Commands for Translation and Deployment to Oracle9i
Command-Line Syntax for ojspc
Following is the general ojspc command-line syntax (assume % is a UNIX prompt):

% ojspc [option_settings] file_list

The file list can include .jsp files or .sqljsp files.

Be aware of the following syntax notes:

■ If multiple .jsp files are translated, they all must use the same character set
(either by default or through page directive contentType settings).

■ Use spaces between file names in the file list.

■ Use spaces as separators between option names and option values in the option
list.

■ Option names are not case sensitive, but option values usually are (such as
package names, directory paths, class names, and interface names).

■ Enable boolean options, which are disabled by default, by typing only the
option name. For example, type -hotload, not -hotload true.)

Following is an example:

% ojspc -d /myapp/mybindir -srcdir /myapp/mysrcdir -hotload MyPage.sqljsp MyPage2.jsp

Option Descriptions for ojspc
This section describes the ojspc options in more detail.

-addclasspath (fully qualified path; ojspc default: empty)

Use this option to specify additional classpath entries for javac to use when
compiling generated page implementation class source. Otherwise, javac uses
only the system classpath.

-version n/a boolean to direct ojspc to
display the OracleJSP version
number

false

Table 6–1 Options for ojspc Pre-Translation Utility (Cont.)

Option

Related OracleJSP
Configuration
Parameters Description Default
6-30 JavaServer Pages Developer’s Guide and Reference

Tools and Commands for Translation and Deployment to Oracle9i
-appRoot (fully qualified path; ojspc default: current directory)

Use this option to specify an application root directory. The default is the current
directory, from which ojspc was run.

The specified application root directory path is used as follows:

■ It is used for static include directives in the page being translated. The
specified directory path is prepended to any application-relative
(context-relative) paths in the include directives of the translated page.

■ It is used in determining the package of the page implementation class. The
package will be based on the location of the file being translated relative to the
application root directory. The package, in turn, determines the placement of
output files. (See "Summary of ojspc Output Files, Locations, and Related
Options" on page 6-38.)

This option is necessary, for example, so included files can still be found if you run
ojspc from some other directory.

Consider the following example:

■ You want to translate the following file:

/abc/def/ghi/test.jsp

■ You run ojspc from the current directory, /abc, as follows (assume % is a
UNIX prompt):

% cd /abc
% ojspc def/ghi/test.jsp

■ The test.jsp page has the following include directive:

<%@ include file="/test2.jsp" %>

Notes:

■ In an on-demand translation scenario, the OracleJSP
classpath configuration parameter provides related,
although different, functionality. See "OracleJSP Configuration
Parameters (Non-OSE)" on page A-15.

■ The -addclasspath setting is also used by the SQLJ
translator for SQLJ JSP pages.
 JSP Translation and Deployment 6-31

Tools and Commands for Translation and Deployment to Oracle9i
■ The test2.jsp page is in the /abc directory, as follows:

/abc/test2.jsp

This requires no -appRoot setting, because the default application root setting is
the current directory, which is the /abc directory. The include directive uses the
application-relative /test2.jsp syntax (note the beginning "/"), so the included
page will be found as /abc/test2.jsp.

The package in this case is _def._ghi, based simply on the location of test.jsp
relative to the current directory, from which ojspc was run (the current directory is
the default application root). Output files are placed accordingly.

If, however, you run ojspc from some other directory, suppose /home/mydir,
then you would need an -appRoot setting as in the following example:

% cd /home/mydir
% ojspc -appRoot /abc /abc/def/ghi/test.jsp

The package is still _def._ghi, based on the location of test.jsp relative to the
specified application root directory.

-d (fully qualified path; ojspc default: current directory)

Use this option to specify a base directory for ojspc placement of generated binary
files—.class files and Java resource files. (The .res files produced for static
content by the -extres and -hotload options are Java resource files, as are .ser
profile files produced by the SQLJ translator for SQLJ JSP pages.)

The specified path is taken simply as a file system path (not an application-relative
or page-relative path).

Subdirectories under the specified directory are created automatically, as
appropriate, depending on the package. See "Summary of ojspc Output Files,
Locations, and Related Options" on page 6-38 for more information.

The default is to use the current directory (your current directory when you
executed ojspc).

Note: It is typical for the specified application root directory to be
some level of parent directory of the directory where the translated
JSP page is located.
6-32 JavaServer Pages Developer’s Guide and Reference

Tools and Commands for Translation and Deployment to Oracle9i
It is recommended that you use this option to place generated binary files into a
clean directory so that you easily know what files have been produced.

-debug (boolean; ojspc default: false)

Enable this flag to instruct ojspc to generate a line map to the original .jsp file for
debugging. Otherwise, line-mapping will be to the generated page implementation
class.

This is useful for source-level JSP debugging, such as when using Oracle
JDeveloper.

-extend (fully qualified Java class name; ojspc default: empty)

Use this option to specify a Java class that the generated page implementation class
will extend.

-extres (boolean; ojspc default: false)

Enable this flag to instruct ojspc to place generated static content (the Java print
commands that output static HTML code) into a Java resource file instead of into an
inner class of the generated page implementation class.

The resource file name is based on the JSP page name. For release 1.1.2.x it will be
the same core name as the JSP name (unless special characters are included in the
JSP name), but with an underscore ("_") prefix and .res suffix. Translation of
MyPage.jsp, for example, would create _MyPage.res in addition to normal

Notes:

■ In environments such as Windows NT that allow spaces in
directory names, enclose the directory name in quotes.

■ In an on-demand translation scenario, the OracleJSP
page_repository_root configuration parameter provides
related functionality. See "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15.

Note: In an on-demand translation scenario, the OracleJSP
emit_debuginfo configuration parameter provides the same
functionality. See "OracleJSP Configuration Parameters (Non-OSE)"
on page A-15.
 JSP Translation and Deployment 6-33

Tools and Commands for Translation and Deployment to Oracle9i
output. The exact implementation for name generation may change in future
releases, however.

The resource file is placed in the same directory as .class files.

If there is a lot of static content in a page, this technique will speed translation and
may speed execution of the page. For more information, see "Workarounds for
Large Static Content in JSP Pages" on page 4-16.

-hotload (boolean; ojspc default: false) (for OSE only)

Enable this flag to allow hotloading. This is relevant only if you will be loading the
translated pages into Oracle9i to run in the Oracle9i Servlet Engine.

The -hotload flag directs ojspc to do the following:

1. Perform -extres functionality, writing static output to a Java resource file (see
the -extres description above).

2. Create a main() method and a hotloading method in the generated page
implementation class to allow hotloading.

For an overview of hotloading, see "Overview of Hotloaded Classes in Oracle9i" on
page 6-24. For how to accomplish the hotloading step (once hotloading has been
enabled), see "Hotloading Page Implementation Classes in Oracle9i" on page 6-68.

-implement (fully qualified Java interface name; ojspc default: empty)

Use this option to specify a Java interface that the generated page implementation
class will implement.

Notes:

■ The inner class is still created and must still be deployed.

■ In an on-demand translation scenario, the OracleJSP
external_resource configuration parameter provides the
same functionality. See "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15.

Note: To write static content to a resource file without enabling
hotloading (if the page will not be running in OSE, for example),
use the -extres option.
6-34 JavaServer Pages Developer’s Guide and Reference

Tools and Commands for Translation and Deployment to Oracle9i
-noCompile (boolean; ojspc default: false)

Enable this flag to direct ojspc not to compile the generated page implementation
class Java source. This allows you to compile it later with an alternative Java
compiler.

-packageName (fully qualified package name; ojspc default: per .jsp file location)

Use this option to specify a package name for the generated page implementation
class, using Java "dot" syntax.

Without setting this option, the package name is determined according to the
location of the .jsp file relative to the current directory (from which you ran
ojspc).

Consider an example where you run ojspc from the /myapproot directory, while
the .jsp file is in the /myapproot/src/jspsrc directory (assume % is a UNIX
prompt):

% cd /myapproot
% ojspc -packageName myroot.mypackage src/jspsrc/Foo.jsp

This results in myroot.mypackage being used as the package name.

If this example did not use the -packageName option, OracleJSP release 1.1.2.x
would use _src._jspsrc as the package name, by default. (Be aware that such
implementation details are subject to change in future releases.)

-S-<sqlj option> <value> (-S followed by SQLJ option setting; ojspc default: empty)

For SQLJ JSP pages, use the ojspc -S option to pass an Oracle SQLJ option to the
SQLJ translator. You can use multiple occurrences of -S, with one SQLJ option per
occurrence.

Notes:

■ In an on-demand translation scenario, the OracleJSP javaccmd
configuration parameter provides related functionality,
allowing you to specify an alternative Java compiler directly.
See "OracleJSP Configuration Parameters (Non-OSE)" on
page A-15.

■ For a SQLJ JSP page, enabling -noCompile does not prevent
SQLJ translation, just Java compilation.
 JSP Translation and Deployment 6-35

Tools and Commands for Translation and Deployment to Oracle9i
Unlike when you run the SQLJ translator directly, use a space between a SQLJ
option and its value (this is for consistency with other ojspc options).

For example (from a UNIX prompt):

% ojspc -S-default-customizer mypkg.MyCust -d /myapproot/mybindir MyPage.jsp

This invokes the Oracle SQLJ -default-customizer option to choose an
alternative profile customizer, as well as setting the ojspc -d option.

Here is another example:

% ojspc -S-ser2class true -S-status true -d /myapproot/mybindir MyPage.jsp

This enables the SQLJ -ser2class option (to convert the profile to a .class file)
and the SQLJ -status option (to display status information as the .sqlj file is
translated).

Note the following for particular Oracle SQLJ options:

■ Do not use the SQLJ -encoding option; instead, use the contentType
parameter in a page directive in the JSP page.

■ Do not use the SQLJ -classpath option if you use the ojspc
-addclasspath option.

■ Do not use the SQLJ -compile option if you use the ojspc -noCompile
option.

■ Do not use the SQLJ -d option if you use the ojspc -d option.

■ Do not use the SQLJ -dir option if you use the ojspc -srcdir option.

For information about Oracle SQLJ translator options, see the Oracle9i SQLJ
Developer’s Guide and Reference.

Note: As the preceding example shows, you can use an explicit
true setting in enabling a SQLJ boolean option through the -S
option setting. This is in contrast to ojspc boolean options, which
do not take an explicit true setting.
6-36 JavaServer Pages Developer’s Guide and Reference

Tools and Commands for Translation and Deployment to Oracle9i
-srcdir (fully qualified path; ojspc default: current directory)

Use this option to specify a base directory location for ojspc placement of
generated source files—.sqlj files (for SQLJ JSP pages) and .java files.

The specified path is taken simply as a file system path (not an application-relative
or page-relative path).

Subdirectories under the specified directory are created automatically, as
appropriate, depending on the package. See "Summary of ojspc Output Files,
Locations, and Related Options" on page 6-38 for more information.

The default is to use the current directory (your current directory when you
executed ojspc).

It is recommended that you use this option to place generated source files into a
clean directory so that you conveniently know what files have been produced.

-verbose (boolean; ojspc default: false)

Enable this option to direct ojspc to report its translation steps as it executes.

The following example shows -verbose output for the translation of
myerror.jsp (in this example, ojspc is run from the directory where
myerror.jsp is located; assume % is a UNIX prompt):

% ojspc -verbose myerror.jsp
Translating file: myerror.jsp

Note: In an on-demand translation scenario, the OracleJSP
sqljcmd configuration parameter provides related functionality,
allowing you to specify an alternative SQLJ translator or specify
SQLJ option settings. See "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15.

Notes:

■ In environments such as Windows NT that allow spaces in
directory names, enclose the directory name in quotes.

■ In an on-demand translation scenario, the OracleJSP
page_repository_root configuration parameter provides
related functionality. See "OracleJSP Configuration Parameters
(Non-OSE)" on page A-15.
 JSP Translation and Deployment 6-37

Tools and Commands for Translation and Deployment to Oracle9i
1 JSP files translated successfully.
Compiling Java file: ./_myerror.java

-version (boolean; ojspc default: false)

Enable this option for ojspc to display the OracleJSP version number and then
exit.

Summary of ojspc Output Files, Locations, and Related Options
By default, ojspc generates the same set of files that are generated by the
OracleJSP translator in an on-demand translation scenario and places them in or
under the current directory (from which ojspc was executed).

Here are the files:

■ a .sqlj source file (SQLJ JSP pages only)

■ a .java source file

■ a .class file for the page implementation class

■ a .class file for the inner class for static text

■ a Java resource file (.ser) or, optionally, a .class file for the SQLJ profile
(SQLJ JSP pages only)

This assumes standard SQLJ code generation. Oracle-specific SQLJ code
generation produces no profiles.

■ optionally, a Java resource file (.res) for the static text of the page

For more information about files that are generated by the OracleJSP translator, see
"Generated Files and Locations (On-Demand Translation)" on page 6-7.

To summarize some of the commonly used options described under "Option
Descriptions for ojspc" on page 6-30, you can use the following ojspc options to
affect file generation and placement:

■ -appRoot to specify an application root directory

■ -srcdir to place source files in a specified alternative location

■ -d to place binary files (.class files and Java resource files) in a specified
alternative location

■ -noCompile to not compile the generated page implementation class source
(as a result of this, no .class files are produced)
6-38 JavaServer Pages Developer’s Guide and Reference

Tools and Commands for Translation and Deployment to Oracle9i
In the case of SQLJ JSP pages, translated .java files are still produced, but not
compiled.

■ -extres to put static text into a Java resource file

■ -hotload to put static text into a Java resource file and to enable hotloading
(relevant only for pages targeting the Oracle9i Servlet Engine)

■ -S-ser2class (SQLJ -ser2class option, for SQLJ JSP pages only) to
generate the SQLJ profile in a .class file instead of a .ser Java resource file

For output file placement, the directory structure underneath the current directory
(or directories specified by the -d and -srcdir options, as applicable) is based on
the package. The package is based on the location of the file being translated
relative to the application root, which is either the current directory or the directory
specified in the -appRoot option.

For example, presume you run ojspc as follows (presume % is a UNIX prompt):

% cd /abc
% ojspc def/ghi/test.jsp

Then the package is _def._ghi and output files will be placed in the directory
/abc/_def/_ghi, where the _def/_ghi subdirectory structure is created as part
of the process.

If you specify alternate output locations through the -d and -srcdir options, a
_def/_ghi subdirectory structure is created under the specified directories.

Now presume ojspc is run from some other directory, as follows:

% cd /home/mydir
% ojspc -appRoot /abc /abc/def/ghi/test.jsp

The package is still _def._ghi, according to the location of test.jsp relative to
the specified application root. Output files will be placed in the directory
/home/mydir/_def/_ghi or in a _def/_ghi subdirectory under locations
specified through the -d and -srcdir options. In either case, the _def/_ghi
subdirectory structure is created as part of the process.

Notes: It is advisable that you run ojspc once for each directory
of your JSP application, so files in different directories can be given
different package names, as appropriate.
 JSP Translation and Deployment 6-39

Tools and Commands for Translation and Deployment to Oracle9i
Overview of the loadjava Tool
The loadjava command-line tool is supplied with Oracle9i to create schema
objects from Java files and load them into a specified Oracle9i schema.

For information beyond what is provided here, and for information about the
associated dropjava tool (for removing Java source, class, and resource schema
objects from Oracle9i), see the Oracle9i Java Tools Reference.

Generally speaking (not for JSP applications in particular), a Java developer can
compile Java source on the client and then load the resulting class files, or can load
Java source and have it compiled in Oracle9i automatically by the server-side
compiler. In the first case, only class schema objects are created. In the second case,
both source schema objects and class schema objects are created. In either case, the
developer can also load Java resource files, creating resource schema objects.

The loadjava tool accepts source files, class files, resource files, JAR files, and ZIP
files on the command line. Source files and class files cannot be loaded
simultaneously, however. A JAR file, ZIP file, or loadjava command line can
contain source files or class files, but not both. (In either case, resource files can be
included.)

A JAR or ZIP file is opened and processed, with each file within the JAR or ZIP file
resulting in one or more schema objects.

For OracleJSP, use loadjava as follows:

■ For client-side translation, you will have already translated your JSP pages
using ojspc, which, by default, also compiles the translated Java source. Then
use loadjava to load the resulting .class files and any resource files (the
ojspc -hotload option, for example, produces a resource file), typically all
bundled into a JAR file.

Alternatively, you can load the translated .java file instead of the compiled
.class files. You can have the server-side compiler compile the .java file as it
is being loaded.

■ For server-side translation, use loadjava to load untranslated .jsp files,
typically bundled into a JAR file, as resource schema objects. (They will be
translated and published later, in the server, as a result of the session shell
publishjsp command.)

Following is the complete loadjava option syntax. Brackets, {...}, are not part
of the syntax. They are used to surround two possible option formats that are
followed by option input.
6-40 JavaServer Pages Developer’s Guide and Reference

Tools and Commands for Translation and Deployment to Oracle9i
loadjava {-user | -u} user/password[@database] [options]
file.java | file.class | file.jar | file.zip | file.sqlj | resourcefile
 [-debug]
 [-d | -definer]
 [{-e | -encoding} encoding_scheme]
 [-f | -force]
 [{-g | -grant} user [, user]...]
 [-o | -oci8]
 [-order]
 [-noverify]
 [-r | -resolve]
 [{-R | -resolver} "resolver_spec"]
 [{-S | -schema} schema]
 [-stdout]
 [-s | -synonym]
 [-t | -thin]
 [-v | -verbose]

Of particular significance are the -user and -resolve options (which can be
abbreviated to -u and -r, respectively). Use the -user option to specify the schema
name and password. Use the -resolve option to specify whether loadjava is to
compile (if applicable) and resolve external references in the classes you are loading,
after all classes on the command line have been loaded.

If you are loading a .java source file that you want compiled by the server-side
compiler during loading, you must enable the -resolve option.

Following is an example for a client-side translation scenario where the JSP page
has already been translated and compiled using the ojspc utility, producing file
_HelloWorld.class and another .class file for the page implementation inner
class (with a name that starts with "_HelloWorld"). Assume % is a UNIX prompt:

% loadjava -u scott/tiger -r _HelloWorld*.class

Or you can bundle the files into a JAR file:

% loadjava -v -u scott/tiger -r HelloWorld.jar

The loadjava -v (-verbose) option, which provides detailed status reporting as
loading progresses, is especially useful when you are loading a number of files or
compiling in the server.

The following example is also for a client-side translation scenario
(_HelloWorld.java is the JSP translator output), but where you have elected to
 JSP Translation and Deployment 6-41

Tools and Commands for Translation and Deployment to Oracle9i
skip the compilation step on the client (using the ojspc -noCompile option) and
instead have the server-side compiler handle the compilation:

% loadjava -v -u scott/tiger -r _HelloWorld.java

The following example is for a server-side translation scenario:

% loadjava -u scott/tiger -r HelloWorld.jsp

Overview of the sess_sh Session Shell Tool
The sess_sh (session shell) tool is provided with Oracle9i as an interactive
interface to the session namespace of an Oracle9i instance. You specify connection
arguments when you start sess_sh. It then presents you with its $ prompt to
indicate that it is ready for commands.

The session shell tool has many commands you can run from the $ prompt, each of
which may have its own set of options. For OracleJSP developers, the
publishservlet and unpublishservlet commands (for deployment with
client-side translation), publishjsp and unpublishjsp commands (for
deployment with server-side translation), and createcontext command (for
creating OSE servlet contexts) are of primary interest.

Following are the key sess_sh syntax elements for starting the tool:

sess_sh -user user -password password -service serviceURL

■ The -user parameter specifies the user name of the schema.

■ The -password parameter specifies the password for the specified user name.

■ The -service parameter specifies the URL of the database or database cache
whose session namespace is to be "opened" by sess_sh. The serviceURL
parameter should have one of the three following forms:

sess_iiop://host:port:sid
jdbc:oracle:type:spec
http://host[:port]

Following are some general examples:

sess_iiop://localhost:2481:orcl
jdbc:oracle:thin:@myhost:1521:orcl
http://localhost:8000
6-42 JavaServer Pages Developer’s Guide and Reference

Tools and Commands for Translation and Deployment to Oracle9i
Here is an example of a sess_sh command line:

% sess_sh -user SCOTT -password TIGER -service jdbc:oracle:thin:@myhost:5521:orcl

After starting sess_sh, you will see its command prompt:

$

In addition to publish object commands, such as publishservlet and
publishjsp, the session shell tool offers shell commands that give the session
namespace much of the "look and feel" of a UNIX file system as seen from one of
the UNIX shells (such as the C shell). For example, the following sess_sh
command displays the published objects and publishing contexts in the
/alpha/beta/gamma publishing context (publishing contexts are nodes in the
session namespace, analogous to directories in a file system):

$ ls /alpha/beta/gamma

As mentioned previously, key sess_sh commands for OracleJSP developers
include the following:

$ publishjsp ...
$ unpublishjsp ...
$ publishservlet ...
$ unpublishservlet ...
$ createcontext ...

For information about the publishservlet and unpublishservlet
commands, see "Publishing Translated JSP Pages in Oracle9i (Session Shell
publishservlet)" on page 6-69. For information about the publishjsp and
unpublishjsp commands, see "Translating and Publishing JSP Pages in Oracle9i
(Session Shell publishjsp)" on page 6-46.

Each session shell command has a -describe option to describe its operation, a
-help option to summarize its syntax, and a -version option to show its version
number.
 JSP Translation and Deployment 6-43

Tools and Commands for Translation and Deployment to Oracle9i
Note: This document provides only abbreviated discussion of
sess_sh syntax and options. It presents only the simplest
invocation and usage of the tool.

Beyond what is presented here, for example, commands can be
specified within quotes on the sess_sh command line instead of
at the $ prompt.

There are also top-level options to connect with plain IIOP instead
of the default session IIOP, to specify a role, to connect to the
database or database cache with SSL server authentication, and to
use a service name instead of an SID in the URL.

For complete information about the sess_sh tool, see the Oracle9i
Java Tools Reference.
6-44 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Server-Side Translation
Deployment to Oracle9i with Server-Side Translation
This section describes the steps for deployment to Oracle9i with server-side
translation.

The steps are as follows:

1. Use loadjava to load untranslated JSP page or SQLJ JSP page source files into
Oracle9i.

2. Use the session shell publishjsp command to translate and publish the
pages.

The publishjsp step automatically handles translation, compilation, hotloading
(if applicable), and publishing.

Loading Untranslated JSP Pages into Oracle9i (loadjava)
As the first step for deployment with server-side translation, use the Oracle
loadjava tool to load untranslated .jsp or .sqljsp files into Oracle9i as Java
resource files.

If you are loading multiple files, it is recommended that you put the files into a JAR
file for loading.

The loadjava tool is provided with Oracle9i as a general-purpose tool for loading
Java files into the server. For an overview, see "Overview of the loadjava Tool" on
page 6-40. For further information, see the Oracle9i Java Tools Reference.

Following is an example of loading an untranslated page:

% loadjava -u scott/tiger Foo.jsp

This loads Foo.jsp into the SCOTT schema (password TIGER) as a Java resource
object. There is no need to specify the loadjava -resolve (-r) option.

This will result in the following resource schema object being created in Oracle9i:

■ SCOTT:Foo.jsp

Note that any path information you specify for the .jsp file, either in a JAR file or
on the loadjava command line, determines placement of the resource schema
object. Consider the following modification of the previous example:

% loadjava -u scott/tiger xxx/yyy/Foo.jsp
 JSP Translation and Deployment 6-45

Deployment to Oracle9i with Server-Side Translation
This will result in the following resource schema object being created in Oracle9i:

■ SCOTT:xxx/yyy/Foo.jsp

For an overview of how loadjava names the schema objects it produces, see
"Database Schema Objects for Java" on page 6-14.

You can also load a .sqljsp file:

% loadjava -u scott/tiger Foo.sqljsp

This loads Foo.sqljsp into the SCOTT schema and will result in the following
resource schema object being created in Oracle9i:

■ SCOTT:Foo.sqljsp

If you want to load multiple .jsp (or .sqljsp) files, you can use a wildcard
character (depending on your operating environment; assume % is a UNIX prompt):

% loadjava -u scott/tiger *.jsp

Or presume you had put the .jsp files into a JAR file:

% loadjava -u scott/tiger myjspapp.jar

Translating and Publishing JSP Pages in Oracle9i (Session Shell publishjsp)
In the scenario of deployment with server-side translation, the translation (.jsp or
.sqljsp to .java), compilation (.java to .class), hotloading (if enabled), and
publishing all occur as the result of executing the Oracle9i session shell
publishjsp command. See "Overview of the sess_sh Session Shell Tool" on
page 6-42 for how to start the session shell and connect to Oracle9i.

Run publishjsp after you have loaded a .jsp (or .sqljsp) file into Oracle9i as a
resource schema object. (This section includes separate discussion for running
publishjsp on a .sqljsp file because there are some logistical differences in the
results.)

Note: JSP pages that are published with publishjsp can be
"unpublished" (removed from the Oracle9i JNDI namespace) with
the session shell unpublishjsp command. See "Unpublishing JSP
Pages with unpublishjsp" on page 6-58.
6-46 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Server-Side Translation
Overview of publishjsp Syntax and Options
Starting sess_sh establishes a connection to Oracle9i. Once you start sess_sh,
you can run the publishjsp command from the session shell $ prompt.

The publishjsp command uses the following general syntax:

$ publishjsp [options] path/name.jsp

The options can be any of the following:

-context context [-schema schemaname] [-virtualpath path] [-servletName name]
[-packageName name] [-hotload] [-stateless] [-verbose] [-extend class]
[-implement interface] [-resolver resolver]

The file name.jsp (or name.sqljsp for a SQLJ JSP page) is the JSP page resource
schema object that you loaded with loadjava and is a required parameter, along
with any relevant schema path information.

In addition, you should always specify a -context setting.

By default, if no -virtualpath option is specified, path/name.jsp becomes the
servlet path. For example, running publishjsp on dir1/foo.jsp (the path
within the current schema or specified schema) results in dir1/foo.jsp as the
servlet path.

Together, the context path and servlet path (along with the host name and port)
determine the URL to invoke the page, as described in "URLs for the Oracle9i
Servlet Engine" on page 6-17.

The following informative options are also available:

■ Use -showVersion by itself to display the OracleJSP version number and exit.

■ Use -usage by itself to display a publishjsp option list and exit.

Important:

■ Enable boolean options, such as -hotload, by typing only the
option name in the command line (as opposed to setting it to
true).

■ For options where you specify a value, the value does not have
to be in quotes.
 JSP Translation and Deployment 6-47

Deployment to Oracle9i with Server-Side Translation
Following are the option descriptions:

■ -context context

Use this option to specify a servlet context in the Oracle9i Servlet Engine. The
context path of this servlet context becomes part of the URL used to invoke the
page.

Any specified context should be under the appropriate Web domain, as follows:

/domain_name/contexts/context_name

(Where domain_name represents the name of the particular domain.)

■ -schema schemaname

Use this option to specify the schema where the JSP page resource schema
object is located, if it is not in the same schema you logged in to through
sess_sh.

This schema must be accessible from your sess_sh login schema. The
publishjsp command does not offer a way to specify passwords.

■ -virtualpath path

You can use this option to specify an alternative servlet path for the JSP page;
otherwise, the servlet path is simply the specified .jsp file name itself along
with any specified schema path.

For example:

-virtualpath altpath/Foo.jsp

Important:

■ Always specify a -context setting.

■ Remember it is the context path of the servlet context, not the
context name itself, that is used in URLs to access the page.

When a servlet context is created in OSE with the session shell
createcontext command, both the context path (through the
createcontext -virtualpath option) and the context
name must be specified. It is convenient, and probably typical,
to specify the context name and context path to be the same,
but it is not required.
6-48 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Server-Side Translation
Or perhaps simply:

-virtualpath mypath.jsp

■ -servletName name

You can use this option to specify an alternative servlet name (in OSE
named_servlets) for the JSP page; however, the servlet name has no bearing
on how the page is invoked, so is rarely needed.

By default, the servlet name is based on the base name of the .jsp file along
with any path you specified. For example, running publishjsp on
SCOTT:dir1/Foo.jsp results in _dir1._Foo as the servlet name in
OracleJSP release 1.1.2.x (Be aware that implementation details are subject to
change in future releases.)

■ -packageName name

You can use this option to specify a package name for the generated page
implementation class; otherwise, it is based on any path specification for the
.jsp file when you run publishjsp. For example, running publishjsp on
SCOTT:dir1/Foo.jsp results in package _dir1 for the page implementation
class.

The -packageName option affects where schema objects are placed in the
schema, but does not affect the servlet path of the JSP page.

Also be aware that if no -servletName setting is specified, the
-packageName setting is also reflected in the servlet name. Consider the
following example:

$ publishjsp -packageName mytestpkg -verbose simple1_a.jsp

This results in the following servlet name:

mytestpkg._simple1__a.jsp

Important: If you use the publishjsp -servletName option,
you must also use the unpublishjsp -servletName option if
you unpublish the page. Therefore, when you publish the page, it is
advisable to use the publishjsp -verbose option to verify the
resulting servlet name.
 JSP Translation and Deployment 6-49

Deployment to Oracle9i with Server-Side Translation
However, if a -servletName setting is specified, its effect on the servlet name
overrides the effect of the -packageName setting.

■ -hotload

Enable this flag to enable and perform hotloading. This results in the following
steps being performed automatically by the publishjsp command:

1. Static output is written to a resource schema object instead of to the page
implementation class schema object.

2. A main() method and a hotloading method are implemented in the
generated page implementation class to allow hotloading.

3. The main() method is executed to perform hotloading.

To use -hotload, you must have permission for the Oracle9i hotloader. This
can be granted as follows (from SQL*Plus, for the SCOTT schema, for example):

dbms_java.grant_permission(’SCOTT’, ’SYS:oracle.aurora.security.JServerPermission’, ’HotLoader’, null);

For an overview of hotloading, see "Overview of Hotloaded Classes in Oracle9i"
on page 6-24.

■ -stateless

This is a boolean option that tells the Oracle9i Servlet Engine that the JSP page
is to be stateless—the JSP page should not have access to the HttpSession
object during execution.

This flag is used for mod_ose optimization. For information about the Apache
mod_ose module, see the Oracle9i Servlet Engine Developer’s Guide.

■ -verbose

Set this option to true to direct publishjsp to report the translation steps as
it executes.

Important: If you use the publishjsp -packageName option,
you must use the unpublishjsp -servletName option if you
unpublish the page. Therefore, when you publish the page, it is
advisable to use the publishjsp -verbose option to verify the
resulting servlet name.
6-50 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Server-Side Translation
■ -extend

Use this option to specify a Java class that the generated page implementation
class will extend.

■ -implement

Use this option to specify a Java interface that the generated page
implementation class will implement.

■ -resolver

Use this option to specify an alternative Java class resolver. The resolver is used
in compiling and resolving Java source through loadjava, including locating
classes used in JSP pages.

The default resolver is ((* user) (* PUBLIC)). For the SCOTT schema, for
example, this is the following:

((* SCOTT) (* PUBLIC))

For the -resolver option, you must specify the value in quotes as in the
following example:

$ publishjsp ... -resolver "((* BILL) (* SCOTT) (* PUBLIC))" ...

Examples: Publishing JSP Pages with publishjsp
This section provides examples of using publishjsp to translate and publish
.jsp pages in Oracle9i. The pages will have already been loaded as resource
schema objects in a particular schema, such as SCOTT:Foo.jsp.

(For information about running publishjsp on .sqljsp pages, see "Publishing
SQLJ JSP Pages with publishjsp" on page 6-55.)

To review how the servlet path and context path combine in forming the URL to
invoke the page, see "URLs for the Oracle9i Servlet Engine" on page 6-17.

Example Notes These notes apply to the examples that follow:

■ The examples use the SCOTT schema. SCOTT must either be the schema
specified when starting sess_sh, or accessible from the schema specified.

■ Each example lists the schema objects that are created, although this is
secondary. All that matters in invoking the JSP page is the servlet path and
context path. The page implementation class schema object is automatically
mapped during the publishjsp publishing step. Note that default package
 JSP Translation and Deployment 6-51

Deployment to Oracle9i with Server-Side Translation
names and output schema object names have underscores in them, even though
the original JSP resource schema object name and resulting servlet path do not
have underscores. Again, this is secondary and does not impact the user.

■ Application-relative and page-relative syntax for dynamic jsp:include and
jsp:forward statements inside Oracle9i is the same as for any JSP
environment. The relative paths are according to how the JSP pages were
published (as shown in the examples below).

■ The exact names of generated schema objects may change in future releases, but
will still have the same general form. The names would always include the base
name (such as "Foo" in these examples), but may include slight variations.

■ $ is the sess_sh prompt.

Example 1

$ publishjsp -schema SCOTT dir1/Foo.jsp

This uses the default servlet context of the relevant OSE Web domain, so the context
path is "/".

The default servlet path is dir1/Foo.jsp.

After this command, Foo.jsp can be invoked as follows:

http://host[:port]/dir1/Foo.jsp

Access it dynamically from another JSP page in the application, suppose a page
published as dir1/Bar.jsp, as follows (using page-relative syntax and then
application-relative syntax):

<jsp:include page="Foo.jsp" flush="true" />

or:

<jsp:include page="/dir1/Foo.jsp" flush="true" />

By default, _dir1 is the Java package for the page implementation class and inner
class. The following schema objects are created:

■ SCOTT:_dir1/_Foo source schema object

■ SCOTT:_dir1/_Foo class schema object

■ a class schema object for the inner class for static text (with "Foo" in the name,
such as SCOTT:_dir1/_Foo$__jsp_StaticText)
6-52 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Server-Side Translation
Example 2

$ publishjsp -schema SCOTT -context /scottRoot/contexts/scottContext Foo.jsp

Presume scottContext had been created as follows:

$ createcontext -virtualpath /ose /scottRoot scottContext

The publishjsp command publishes the page to the scottContext servlet
context, which was created with /ose specified as the context path.

The default servlet path is simply Foo.jsp.

After this command, Foo.jsp can be invoked as follows (assume port 8088 for the
Web service):

http://host:8088/ose/Foo.jsp

Access it dynamically from another JSP page in the application, suppose a page
published as Bar.jsp, as follows (using page-relative syntax and then
application-relative syntax):

<jsp:include page="Foo.jsp" flush="true" />

or:

<jsp:include page="/Foo.jsp" flush="true" />

Even though this example specifies a non-default servlet context, that is not relevant
for dynamic jsp:include or jsp:forward commands. What is relevant is that
the published path of the page relative to that context is simply /Foo.jsp.

By default, there is no Java package for the page implementation class and inner
class (because no path is specified in the SCOTT schema). The following schema
objects are created:

■ SCOTT:_Foo source schema object

■ SCOTT:_Foo class schema object

■ a class schema object for the inner class for static text (with "Foo" in the name,
such as SCOTT:_Foo$__jsp_StaticText)
 JSP Translation and Deployment 6-53

Deployment to Oracle9i with Server-Side Translation
Example 3

$ publishjsp -schema SCOTT -context /scottRoot/contexts/scottContext dir1/Foo.jsp

Presume scottContext had been created as follows:

$ createcontext -virtualpath /ose /scottRoot scottContext

The publishjsp command publishes the page to the scottContext servlet
context, which was created with /ose specified as the context path.

The default servlet path is dir1/Foo.jsp.

After this command, Foo.jsp can be invoked as follows (assume port 8088 for the
Web service):

http://host:8088/ose/dir1/Foo.jsp

Access it dynamically from another JSP page in the application, suppose a page
published as dir1/Bar.jsp, as follows (using page-relative syntax and then
application-relative syntax):

<jsp:include page="Foo.jsp" flush="true" />

or:

<jsp:include page="/dir1/Foo.jsp" flush="true" />

Example 1 and Example 3 use different servlet contexts, but in either case what is
relevant for the application-relative include command is that the published path
of the page relative to that context is /dir1/Foo.jsp.

By default, _dir1 is the Java package for the page implementation class and inner
class. The following schema objects are created:

■ SCOTT:_dir1/_Foo source schema object

■ SCOTT:_dir1/_Foo class schema object

■ a class schema object under _dir1 for the inner class for static text (with "Foo"
in the name, such as SCOTT:_dir1/_Foo$__jsp_StaticText)
6-54 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Server-Side Translation
Example 4

$ publishjsp -schema SCOTT -hotload -packageName mypkg dir1/Foo.jsp

This performs hotloading, uses the default servlet context of the relevant OSE Web
domain, and overrides the default _dir1 package.

The context path is "/".

The -packageName option does not affect the servlet path, which, by default,
remains dir1/Foo.jsp.

After this command, Foo.jsp can be invoked as follows:

http://host[:port]/dir1/Foo.jsp

Access it dynamically from another JSP page in the application, suppose a page
published as dir1/Bar.jsp, as follows (using page-relative syntax and then
application-relative syntax):

<jsp:include page="Foo.jsp" flush="true" />

or:

<jsp:include page="/dir1/Foo.jsp" flush="true" />

The following schema objects are created:

■ SCOTT:mypkg/_Foo source schema object

■ SCOTT:mypkg/_Foo class schema object

■ a class schema object under mypkg for the inner class (with "Foo" in the name,
such as SCOTT:mypkg/_Foo$__jsp_StaticText)

■ SCOTT:mypkg/_Foo.res resource schema object for the static text that is
normally in the inner class (the resource is hotloaded as part of publishjsp
functionality)

Publishing SQLJ JSP Pages with publishjsp
This section provides an example of using publishjsp to translate and publish a
.sqljsp page in Oracle9i. The page will have already been loaded as a resource
schema object in a particular schema, such as SCOTT:Foo.sqljsp.

In addition, see "Examples: Publishing JSP Pages with publishjsp" on page 6-51.

To review how the servlet path and context path combine in forming the URL to
invoke the page, see "URLs for the Oracle9i Servlet Engine" on page 6-17.
 JSP Translation and Deployment 6-55

Deployment to Oracle9i with Server-Side Translation
Be aware of the following for .sqljsp pages:

■ Beyond what is created for a .jsp page, an additional schema object is
created—a resource schema object for the SQLJ profile. This is always a .ser
resource schema object, as opposed to a class schema object, because there is no
SQLJ -ser2class option when translating in the server.

For information about SQLJ profiles and Oracle-specific code generation, see
the Oracle9i SQLJ Developer’s Guide and Reference.

■ The generated source schema object is SQLJ source instead of Java source.

■ SQLJ has very limited option support in the server.

Server-Side SQLJ Options Client-side SQLJ options are not available for translation in
the server (this is true in general, not just for JSP pages). Instead, there is a small set
of options available through the standard Oracle9i JAVA$OPTIONS table. These
options can be set through the dbms_java.set_compiler_option() stored
procedure (using SQL*Plus, for example). Of these options, only the following is
supported for JSP pages:

■ online

This is a boolean option that enables online semantics-checking through the default
oracle.sqlj.checker.OracleChecker front-end.

For more information about server-side SQLJ and semantics-checking, see the
Oracle9i SQLJ Developer’s Guide and Reference.

Example of publishjsp for SQLJ JSP Page This section presents an example of
publishjsp usage for a .sqljsp page ($ is the sess_sh prompt). Be aware of
the following:

■ This example uses the SCOTT schema. SCOTT must either be the schema
specified when starting sess_sh, or accessible from the schema specified.

■ This example documents the schema objects that are created, although this is
secondary. All that matters in invoking the JSP page is the servlet path and
context path. The page implementation class schema object is automatically

Note: Discussion of SQLJ profiles assumes standard SQLJ code
generation. Oracle9i SQLJ provides an option, -codegen=oracle,
for Oracle-specific code generation, in which case no profiles are
produced.
6-56 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Server-Side Translation
mapped during the publishjsp publishing step. Note that default package
names and output schema object names have underscores in them, even though
the original SQLJSP resource schema object name and resulting servlet path do
not have underscores. Again, this is secondary and does not impact the user.

■ The exact names of generated schema objects may change in future releases, but
will still have the same general form. The names would always include the base
name (such as "Foo" in these examples), but may include slight variations, such
as _Foo instead of Foo.

Here is the example:

$ publishjsp -schema SCOTT dir1/Foo.sqljsp

This uses the default OSE servlet context, the context path of which is "/".

The servlet path, by default, is dir1/Foo.sqljsp.

After this command, Foo.sqljsp can be invoked as follows:

http://host[:port]/dir1/Foo.sqljsp

Access it dynamically from another JSP page in the application, suppose a page
published as dir1/Bar.jsp, as follows (using page-relative syntax and then
application-relative syntax):

<jsp:include page="Foo.sqljsp" flush="true" />

or:

<jsp:include page="/dir1/Foo.sqljsp" flush="true" />

By default, _dir1 is the Java package for the page implementation class and inner
class, based on the specified path in the SCOTT schema. The following schema
objects are created:

■ SCOTT:_dir1/_Foo source schema object

■ SCOTT:_dir1/_Foo class schema object

■ a class schema object under _dir1 for the inner class for static text (with "Foo"
in the name, such as SCOTT:_dir1/_Foo$__jsp_StaticText)

■ a resource schema object under _dir1 for the SQLJ profile, if applicable (with
"Foo" in the name, such as SCOTT:_dir1/_Foo_SJProfile0.ser)
 JSP Translation and Deployment 6-57

Deployment to Oracle9i with Server-Side Translation
Unpublishing JSP Pages with unpublishjsp
The sess_sh tool also has an unpublishjsp command that removes a JSP page
from the Oracle9i JNDI namespace. This does not, however, remove the page
implementation class schema object from Oracle9i.

Unlike the unpublishservlet command, you do not need to specify a servlet
name (unless you specified one when you ran publishjsp). Generally, the only
required input is the servlet path (sometimes referred to as the "virtual path").

Following is the general syntax:

$ unpublishjsp [-servletName name] [-context context] [-showVersion] [-usage] [-verbose] servletpath

As an example, here is the command to unpublish the page that was published in
Example 1 on page 6-52:

$ unpublishjsp dir1/Foo.jsp

The -servletName, -context, -showVersion, -usage, and -verbose options
are the same as for publishjsp, as described in "Overview of publishjsp Syntax
and Options" on page 6-47.

In using unpublishjsp, remember the following:

■ If you used the publishjsp -context option in publishing the page, use the
unpublishjsp -context option with the same setting when you unpublish
the page.

■ If you used the publishjsp -servletName or -packageName option in
publishing a page, you must use the unpublishjsp -servletName option
to specify the resulting servlet name when you unpublish the page. For
information about how these publishjsp options affect the servlet name, see
the option descriptions in "Overview of publishjsp Syntax and Options" on
page 6-47.

Note: If you use the publishjsp -schemaName or
-packageName option in publishing a JSP page, it is advisable to
also use the -verbose option to verify the servlet name for later
use in unpublishjsp.
6-58 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Client-Side Translation
Deployment to Oracle9i with Client-Side Translation
This section describes the steps for deployment to Oracle9i with client-side
translation.

The steps are as follows:

1. Use ojspc to pre-translate JSP pages or SQLJ JSP pages on the client.

2. Use loadjava to load files into Oracle9i—.class files (or, optionally, .java
or .sqlj files instead) and any Java resource files resulting from the page
translation.

3. Optionally "hotload" the pages in Oracle9i (if hotloading was enabled during
translation). See "Overview of Hotloaded Classes in Oracle9i" on page 6-24 for
background information about hotloading.

4. Use the session shell publishservlet command to publish the pages.

Pre-Translating JSP Pages (ojspc)
To pre-translate JSP pages on a client (typically for pages that will run in the
Oracle9i Servlet Engine), use the ojspc command-line tool to invoke the OracleJSP
translator.

For general information about ojspc and description of its options, see "The ojspc
Pre-Translation Tool" on page 6-26.

The rest of this section covers the following topics:

■ Simplest ojspc Usage

■ ojspc for SQLJ JSP Pages

■ Enabling Hotloading with ojspc

■ Other Key ojspc Features and Options for Deployment to Oracle9i

■ ojspc Examples

Note: For simplicity and convenience, deployment with
server-side translation is generally recommended. See "Deployment
to Oracle9i with Server-Side Translation" on page 6-45.
 JSP Translation and Deployment 6-59

Deployment to Oracle9i with Client-Side Translation
Simplest ojspc Usage
The following example shows the simplest usage of ojspc:

% ojspc Foo.jsp

With this invocation, the following files are produced:

■ _Foo.java

■ _Foo.class

■ _Foo$__jsp_StaticText.class for the inner class for static content

By default, all output goes to the current directory, from which ojspc was run.

ojspc for SQLJ JSP Pages
The ojspc tool also accepts .sqljsp files for JSP pages that use SQLJ code, as
follows:

% ojspc Foo.sqljsp

For .sqljsp files, ojspc automatically invokes the SQLJ translator as well as the
JSP translator.

With this invocation, the following files are produced:

■ _Foo.sqlj (produced from Foo.sqljsp by the JSP translator)

■ _Foo.java (produced from _Foo.sqlj by the SQLJ translator)

■ _Foo.class

■ _Foo$__jsp_StaticText.class for the inner class for static content

■ a Java resource file (.ser) or class file (.class), depending on the setting of
the SQLJ -ser2class option, for the SQLJ "profile" (with "Foo" in the name)

Note: The exact names of generated files may change in future
releases, but will still have the same general form. The names
would always include the base name (such as "Foo" in these
examples), but may include slight variations.
6-60 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Client-Side Translation
For information about SQLJ profiles and Oracle-specific code generation, see
the Oracle9i SQLJ Developer’s Guide and Reference.

By default, all output goes to the current directory, from which ojspc was run.

Enabling Hotloading with ojspc
Use the ojspc -hotload option to enable hotloading, which (among other
things) results in static page content going into a Java resource file instead of into
the inner class of the page implementation class.

The following example translates the page and directs the OracleJSP translator to
enable hotloading:

% ojspc -hotload Foo.jsp

With this command, the translator will generate the following output:

■ _Foo.java (as usual)

■ _Foo.class (as usual)

■ _Foo.res, a Java resource file to contain the static page content

■ _Foo$__jsp_StaticText.class for the inner class, as usual, although the
static content goes into Foo.res instead of going into the inner class

Be aware that the ojspc -hotload option merely enables hotloading; it does not
actually hotload the page. Hotloading requires an additional deployment step, as
described in "Hotloading Page Implementation Classes in Oracle9i" on page 6-68.

For an overview of hotloading, see "Overview of Hotloaded Classes in Oracle9i" on
page 6-24.

Other Key ojspc Features and Options for Deployment to Oracle9i
The following ojspc options, fully described in "Option Descriptions for ojspc" on
page 6-30, are especially useful:

■ -appRoot—Set an application root directory if you do not want the default
(the current directory, from which ojspc was run).

Note: Discussion of SQLJ profiles assumes standard SQLJ code
generation. Oracle9i SQLJ provides an option, -codegen=oracle,
for Oracle-specific code generation, in which case no profiles are
produced.
 JSP Translation and Deployment 6-61

Deployment to Oracle9i with Client-Side Translation
■ -noCompile—Enable this flag if you do not want to compile .java or .sqlj
files during translation. You would do this, for example, if you want to load the
translated page into Oracle9i as a .java file and have compilation performed
by the server-side compiler.

In the case of SQLJ JSP pages, translated .java files are still produced, but not
compiled.

■ -d—Specify the directory where ojspc will place the generated binary files
(.class files and Java resource files). This makes it easier to know what was
generated, and therefore what needs to be loaded into Oracle9i.

■ -srcdir—Specify the directory where ojspc will place the generated .java
or .sqlj source files. For example, this would be useful instead of -d if you are
enabling -noCompile and will load your translated page into Oracle9i as
.java source.

■ -extres—Direct the OracleJSP translator to put static content into a Java
resource file instead of into the inner class of the page implementation class.

■ -hotload—Direct the OracleJSP translator to put static content into a Java
resource file instead of into the inner class of the page implementation class,
and generate code in the page implementation class to enable hotloading.

■ -S—For SQLJ JSP pages, use the -S prefix to set an Oracle SQLJ option; ojspc
will pass the option setting to the Oracle SQLJ translator. (You can have
multiple -S settings in the ojspc command line.)

ojspc Examples
The following examples show the use of key ojspc options.

Example 1

% ojspc -appRoot /myroot/pagesrc -d /myroot/bin -hotload /myroot/pagesrc/Foo.jsp

This example accomplishes the following:

■ Specifies an application root for application-relative static include directives
in the translated page.

■ Enables hotloading and produces the Java resource file _Foo.res for static
content.

■ Places _Foo.java into the current directory, by default. There is no package,
because Foo.jsp is directly under the specified application root directory.
6-62 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Client-Side Translation
■ Places _Foo.class, _Foo.res, and the .class file for the inner class into the
/myroot/bin directory.

Example 2

% ojspc -appRoot /myroot/pagesrc -srcdir /myroot/gensrc -noCompile -extres /myroot/pagesrc/Foo.jsp

This example accomplishes the following:

■ Specifies an application root for application-relative static include directives
in the translated page.

■ Produces the Java resource file _Foo.res for static content (without enabling
hotloading).

■ Places _Foo.java into the /myroot/gensrc directory. There is no package,
because Foo.jsp is directly under the specified application root directory.

■ Does not compile _Foo.java (no .class files are produced).

■ Places _Foo.res into the current directory, by default.

Example 3

% ojspc -appRoot /myroot/pagesrc -d /myroot/bin -extres -S-ser2class true /myroot/pagesrc/Foo.sqljsp

This example accomplishes the following:

■ Specifies an application root for application-relative static include directives
in the translated page.

■ Produces the Java resource file _Foo.res for static content (without enabling
hotloading).

■ Places _Foo.sqlj and _Foo.java into the current directory, by default. There
is no package, because Foo.jsp is directly under the specified application root
directory.

■ Places _Foo.class, _Foo.res, a .class file for the inner class, and a
.class file for the SQLJ profile into the /myroot/bin directory. (Without the
SQLJ -ser2class option setting, the profile would be generated in a .ser
Java resource file instead of a .class file.)
 JSP Translation and Deployment 6-63

Deployment to Oracle9i with Client-Side Translation
Loading Translated JSP Pages into Oracle9i (loadjava)
After client-side pre-translation, use the Oracle loadjava tool to load generated
files into Oracle9i. You can use either of the following scenarios:

■ Load .class files and Java resource files (if any).

■ Use the ojspc -noCompile option during translation, then load the
translated .java file and resource files (if any). The .java file can be compiled
by the Oracle9i server-side compiler during loading.

In either case, whenever you have multiple files it is recommended that you put the
files into a JAR file for loading.

The loadjava tool is provided with Oracle9i as a general-purpose tool for loading
Java files into the database or database cache. For an overview, see "Overview of the
loadjava Tool" on page 6-40. For further information, see the Oracle9i Java Tools
Reference.

Loading Class Files with loadjava
Assume you translated a JSP page Foo.jsp with the ojspc -extres or
-hotload option enabled, producing the following files:

■ _Foo.java

Note: As Example 3 shows, you can use an explicit true setting
in enabling a SQLJ boolean option through the -S option setting.
This is in contrast to ojspc boolean options, such as -extres,
which do not take an explicit true setting.

Important: In the next two subsections, "Loading Class Files with
loadjava" and "Loading Java or SQLJ Source Files with loadjava", be
aware of the following important considerations.

■ Even when you enable the -extres or -hotload option to
place static text into a resource file, the page implementation
inner class is still produced and must still be loaded.

■ Like a Java compiler, loadjava resolves references to classes,
but not to resources; be sure to correctly load the resource files
your classes need—they must be in the same package as the
.java file.
6-64 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Client-Side Translation
■ _Foo.class

■ _Foo$__jsp_StaticText.class

■ _Foo.res

You can ignore _Foo.java, but the binary files (.class and .res) must all be
loaded into Oracle9i. Typically, you would put _Foo.class,
_Foo$__jsp_StaticText.class, and _Foo.res into a JAR file, suppose
Foo.jar, and load it as follows (assume % is a UNIX prompt):

% loadjava -v -u scott/tiger -r Foo.jar

The -u (-user) option specifies the user name and password for the Oracle9i
schema; the -r (-resolve) option resolves the classes as they are loaded.
Optionally use the -v (-verbose) option for detailed status output.

Alternatively, you can load the files individually, as follows. (The syntax depends
on your operating environment. In these examples, assume % is a UNIX prompt.)

% loadjava -v -u scott/tiger -r _Foo*.class _Foo.res

or:

% loadjava -v -u scott/tiger -r _Foo*.*

All these examples result in the following schema objects being created in Oracle9i
(you typically need to know only the name of the page implementation class
schema object):

■ SCOTT:_Foo page implementation class schema object

Or there may be an additional package designation, according to either the
ojspc -packageName option or the relative location of the .jsp file to the
current directory when you ran ojspc. For example, a -packageName setting
of abc.def results in that being the package of the _Foo class, so there would
be a SCOTT:abc/def/_Foo class schema object.

Note: Generated names used here are provided as examples only.
Such implementation details are subject to change in future
releases, although the base name (such as "Foo" here) will always
be part of the generated names.
 JSP Translation and Deployment 6-65

Deployment to Oracle9i with Client-Side Translation
■ SCOTT:abc/def/_Foo$__jsp_StaticText class schema object

With the same package designation as the page implementation class.

■ SCOTT:abc/def/_Foo.res resource schema object

With a package designation according to any path specification, either in a JAR
file or on the loadjava command line, when it was loaded.

For an overview of how loadjava names the schema objects it produces, see
"Database Schema Objects for Java" on page 6-14.

Loading Java or SQLJ Source Files with loadjava
Assume that you translated a JSP page, Foo.jsp, with the ojspc -noCompile
and -extres options enabled, producing the following files:

■ _Foo.java (which you want to load into Oracle9i as source to be compiled by
the server-side compiler)

■ _Foo.res

Typically, you would put _Foo.java and _Foo.res into a JAR file, suppose
Foo.jar, and load it as follows:

% loadjava -v -u scott/tiger -r Foo.jar

When you enable the loadjava -r (-resolve) option, this results in the source
file being compiled automatically by the server-side compiler, producing class
schema objects. The -u (-user) option specifies the user name and password for
the Oracle9i schema. Optionally use the -v (-verbose) option for detailed status
reporting.

Alternatively, you can load the files individually:

% loadjava -v -u scott/tiger -r _Foo.java _Foo.res

Note: If you are loading a pre-translated SQLJ JSP page, you must
also load the generated profile file, if applicable—either a .ser
Java resource file or a .class file, depending on the SQLJ
-ser2class option. If it is a .ser file, schema object naming is
comparable to that of a .res Java resource file; if it is a .class
file, schema object naming is comparable to that of the other
.class files.
6-66 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Client-Side Translation
Or load them using a wildcard character:

% loadjava -v -u scott/tiger -r _Foo.*

All these examples result in the following schema objects being created in Oracle9i
(you typically need to know only the name of the page implementation class
schema object):

■ SCOTT:_Foo source schema object

When you load a source file into Oracle9i with loadjava, the source is stored
separately as a source schema object, in addition to the class schema objects
produced by the server-side compiler.

■ SCOTT:_Foo page implementation class schema object

Or there may be an additional package designation for the _Foo class and
source schema objects, according either to the ojspc -packageName option
or the relative location of the .jsp file to the current directory when you ran
ojspc. For example, a -packageName setting of abc.def results in that being
the package of the _Foo class, so you would have a SCOTT:abc/def/_Foo
class schema object.

■ SCOTT:_Foo$__jsp_StaticText class schema object

With the same package designation as the page implementation class.

■ SCOTT:_Foo.res resource schema object

With the same package designation as the page implementation class.

For an overview of how loadjava names the schema objects it produces, see
"Database Schema Objects for Java" on page 6-14.
 JSP Translation and Deployment 6-67

Deployment to Oracle9i with Client-Side Translation
Hotloading Page Implementation Classes in Oracle9i
To optionally "hotload" translated JSP pages in Oracle9i, use the session shell java
command to invoke the main() method of the page implementation class schema
object. See "Overview of the sess_sh Session Shell Tool" on page 6-42 for how to
start the tool and connect to the database or database cache.

You are required to have previously enabled hotloading through the ojspc
-hotload option during translation. The -hotload option results in a main()
method and hotloading method being implemented in the page implementation
class. Invoking the main() method calls the hotloading method and hotloads the
page implementation class.

Here is an example ($ is the sess_sh prompt):

$ java SCOTT:_Foo

Assuming _Foo is a class that was translated with the -hotload option enabled
and was then loaded with loadjava into the SCOTT schema as in earlier examples,
this session shell java command will hotload the static text portion of the _Foo
page implementation class.

For an overview of hotloading, see "Overview of Hotloaded Classes in Oracle9i" on
page 6-24. For more information about the session shell java command, see the
Oracle9i Java Tools Reference.

Notes:

■ Generated names used here are provided as examples only.
Such implementation details are subject to change in future
releases, although the base name (such as "Foo" here) will
always be part of generated names.

■ If you are loading translated source (.java) for a SQLJ JSP
page, you must also load the generated profile file, if
applicable—either a .ser Java resource file or a .class file,
depending on the SQLJ -ser2class option. If it is a .ser file,
schema object naming is comparable to that of a .res Java
resource file; if it is a .class file, schema object naming is
comparable to that of other .class files. (Remember that the
ojspc -noCompile option prevents Java compilation, but not
SQLJ translation.)
6-68 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Client-Side Translation
Publishing Translated JSP Pages in Oracle9i (Session Shell publishservlet)
To publish translated pages as part of the "deployment with client-side translation"
scenario, use the session shell publishservlet command. See "Overview of the
sess_sh Session Shell Tool" on page 6-42 for how to start the tool and connect to
Oracle9i.

The publishservlet command is for general use in publishing any servlet to run
in OSE, but also applies to JSP page implementation classes (which are essentially
servlets).

Overview of publishservlet Syntax and Options
Starting sess_sh establishes a connection to Oracle9i. Once you start sess_sh,
you can run the publishservlet command from the session shell $ prompt.

The publishservlet command uses the following general syntax:

$ publishservlet context servletName className -virtualpath path [-stateless] [-reuse] [-properties props]

When using publishservlet, you must specify the following:

■ a servlet context (context in the command line above)

This is required by publishservlet. You can use the default servlet context
of the relevant Web domain:

/domain_name/contexts/default

This results in a context path of "/".

If you specify some other servlet context, then the context path of that servlet
context will be used.

For example, if you specify a servlet context, mycontext, created as follows:

$ createcontext -virtualpath /ose /scottRoot scottContext

Then /ose will be the context path for the published JSP page.

Note: Servlets and JSP pages that are published with
publishservlet can be "unpublished" (removed from the
Oracle9i JNDI namespace) with the session shell
unpublishservlet command. See "Unpublishing JSP Pages with
unpublishservlet" on page 6-72.
 JSP Translation and Deployment 6-69

Deployment to Oracle9i with Client-Side Translation
■ a servlet name (servletName in the command line above)

This is required by publishservlet to specify the name for the JSP page in
the named_servlets directory, but has no practical use for the JSP developer
or user other than for unpublishing. It can be an arbitrary name.

■ a class name (className in the command line above)

This is the name of the page implementation class schema object being
published.

■ a servlet path (referred to on the command line as the "virtual path")

Use the -virtualpath option. This is required for a JSP page, although it is
optional for publishing servlets in general.

Together, the context path and servlet path (along with the host name and port)
determine the URL to invoke the page, as described in "URLs for the Oracle9i
Servlet Engine" on page 6-17.

In addition to the required parameters, you can specify any of the following
options:

■ -stateless

This is a boolean option that tells the Oracle9i Servlet Engine that the JSP page
is to be stateless—it should not have access to the HttpSession object during
execution.

■ -reuse

This is a boolean option to specify a new servlet path (referred to as the "virtual
path") for a JSP page. If you enable it, then the specified servlet path will be

Important:

■ The servlet context, servlet name, and class name are not
preceded by any designating syntax, so must appear on the
command line in the above order relative to each other. (Any
publishservlet options can be intermixed with these
parameters, however.)

■ Enable boolean options, such as -stateless, by typing only
the option name in the command line (as opposed to setting it
to true).
6-70 JavaServer Pages Developer’s Guide and Reference

Deployment to Oracle9i with Client-Side Translation
linked to the specified servlet name in the JNDI namespace without
publishservlet going through the complete publishing process.

When you enable the -reuse option, specify a new servlet path, the servlet
context, and a previously published servlet name.

■ -properties props

Use this option to specify properties to be passed to the JSP page as
initialization parameters upon execution.

For more information about the publishservlet command, see the Oracle9i Java
Tools Reference.

Example: Publishing JSP Pages with publishservlet
The following example publishes a JSP page that has been loaded into Oracle9i ($ is
the sess_sh prompt):

$ publishservlet /scottRoot/contexts/default -virtualpath Foo.jsp FooServlet SCOTT:_Foo

For simplicity, the default servlet context (of the /scottRoot domain) is specified,
resulting in "/" as the context path.

Foo.jsp will be the servlet path. (You can specify any name you want for the
servlet path, but naming it according to the original source file name is a good
convention.)

FooServlet will be the servlet name in the OSE named_servlets directory, but
this name generally will not be used, except for unpublishing.

SCOTT:_Foo is the page implementation class schema object being published.

After the above publishservlet command, the end user would invoke the JSP
page with a URL as follows:

http://host[:port]/Foo.jsp

Access it dynamically from another JSP page in the application, suppose a page
published as Bar.jsp, as follows (using page-relative syntax and then
application-relative syntax):

<jsp:include page="Foo.jsp" flush="true" />

or:

<jsp:include page="/Foo.jsp" flush="true" />
 JSP Translation and Deployment 6-71

Deployment to Oracle9i with Client-Side Translation
Unpublishing JSP Pages with unpublishservlet
The sess_sh tool also has an unpublishservlet command that removes a
servlet or JSP page from the Oracle9i JNDI namespace. This does not, however,
remove the servlet class schema object or page implementation class schema object
from Oracle9i.

Specify the context, servlet path (referred to on the command line as the "virtual
path"), and servlet name. Following is the general syntax to unpublish a JSP page:

$ unpublishservlet -virtualpath path context servletName

For example, to unpublish the page that was published in the previous section:

$ unpublishservlet -virtualpath Foo.jsp /scottRoot/contexts/default FooServlet

Note: Both the servlet path and the servlet name specified in the
publishservlet command are entered into the Oracle9i JNDI
namespace, although only the servlet path is generally of interest to
JSP users. OSE uses JNDI to look up any published JSP page or
servlet.
6-72 JavaServer Pages Developer’s Guide and Reference

Additional JSP Deployment Considerations
Additional JSP Deployment Considerations
Most of this chapter focuses on translation and deployment when targeting the
Oracle9i Servlet Engine, because running in Oracle9i is a special situation requiring
special considerations and logistics.

This section covers a variety of additional deployment considerations and scenarios,
mostly for situations where you are not targeting OSE.

The following topics are covered:

■ Doc Root for Oracle9i Application Server Versus Oracle9i Servlet Engine

■ Use of ojspc for Pre-Translation for Non-OSE Environments

■ General JSP Pre-Translation Without Execution

■ Deployment of Binary Files Only

■ WAR Deployment

■ Deployment of JSP Pages with JDeveloper

Doc Root for Oracle9i Application Server Versus Oracle9i Servlet Engine
Both the Oracle9i Servlet Engine and the Oracle9i Application Server use the Oracle
HTTP Server, essentially an Apache environment, as a Web server for HTTP
requests. However, each environment uses its own doc root.

JSP pages and servlets running in the Oracle9i Servlet Engine, which are routed
through the Apache mod_ose module provided by Oracle, use the OSE doc root of
the relevant servlet context. OSE doc root directories are in the file system, but are
linked to the Oracle9i JNDI mechanism.

Remember that for JSP pages running in OSE, only static files are located in or
under the doc root. JSP pages are in the database or database cache.

The doc root directory for an OSE servlet context is specified using the session shell
createcontext command -docroot option when the servlet context is created.
For the default servlet context of the OSE default Web service, admin, the doc root
is the [ORACLE_HOME]/jis/public_html directory. (It is possible to have a null
doc root, although this may lead to undesirable behavior because the default OSE
installation uses the doc root for error mapping.)

JSP pages and servlets running in the Apache/JServ environment of the Oracle9i
Application Server (release 1.0.x), which are routed through the Apache
mod_jserv module provided with JServ, use the Apache doc root. This doc root
 JSP Translation and Deployment 6-73

Additional JSP Deployment Considerations
(typically htdocs) is set in the DocumentRoot command of the Apache
httpd.conf configuration file.

For JSP pages running in JServ, JSP pages as well as static files are located in or
under the doc root.

If you are migrating between the Apache/JServ environment and the OSE
environment, move or copy static files to the appropriate doc root.

Use of ojspc for Pre-Translation for Non-OSE Environments
The Oracle ojspc tool, described in detail in "The ojspc Pre-Translation Tool" on
page 6-26, is typically used for client-side JSP translation for deployment to
Oracle9i. However, you can use ojspc to pre-translate JSP pages in any
environment, which may be useful in saving end users the translation overhead the
first time a page is executed.

If you are pre-translating in some environment other than the target environment,
specify the ojspc -d option to set an appropriate base directory for placement of
generated binary files.

As an example, consider an Apache/JServ environment with the following JSP
source file:

htdocs/test/foo.jsp

A user would invoke this with the following URL:

http://host[:port]/test/foo.jsp

During on-demand translation at execution time, the OracleJSP translator would
use a default base directory of htdocs/_pages for placement of generated binary
files. Therefore, if you pre-translate, you should set htdocs/_pages as the base
directory for binary output, such as in the following example (assume % is a UNIX
prompt):

% cd htdocs
% ojspc -d _pages test/foo.jsp

The URL noted above specifies an application-relative path of test/foo.jsp, so
at execution time the OracleJSP container looks for the binary files in a _test

Note: For an overview of the role of the Oracle HTTP Server and
its mod_ose and mod_jserv modules, see "Role of the Oracle
HTTP Server, Powered by Apache" on page 2-6.
6-74 JavaServer Pages Developer’s Guide and Reference

Additional JSP Deployment Considerations
subdirectory under the default htdocs/_pages directory. This subdirectory would
be created automatically by ojspc if it is run as in the above example. At execution
time, the OracleJSP container would find the pre-translated binaries and would not
have to perform translation, assuming that the source file was not altered after
pre-translation. (By default, the page would be re-translated if the source file
timestamp is later than the binary timestamp, assuming the source file is available
and the bypass_source configuration parameter is not enabled.)

General JSP Pre-Translation Without Execution
In an on-demand translation environment, it is possible to specify JSP
pre-translation only, without execution, by enabling the standard
jsp_precompile request parameter when invoking the JSP page from the end
user’s browser.

Following is an example:

http://host[:port]/foo.jsp?jsp_precompile

Refer to the Sun Microsystems JavaServer Pages Specification, Version 1.1, for more
information.

Deployment of Binary Files Only
If your JSP source is proprietary, you can avoid exposing the source by
pre-translating JSP pages and deploying only the translated and compiled binary
files. Pages that are pre-translated, either from previous execution in an on-demand
translation scenario or by using ojspc, can be deployed to any environment that
supports the OracleJSP container. There are two aspects to this scenario:

■ You must deploy the binary files appropriately.

■ In the target environment, OracleJSP must be configured properly to run pages
when the .jsp (or .sqljsp) source is not available.

Note: OracleJSP implementation details, such as use of an
underscore ("_") in output directory names (as for _test above), are
subject to change from release to release. This documentation
applies specifically to OracleJSP release 1.1.2.x.
 JSP Translation and Deployment 6-75

Additional JSP Deployment Considerations
Deploying the Binary Files
After JSP pages have been translated, archive the directory structure and contents
that are under the binary output directory, then copy the directory structure and
contents to the target environment, as appropriate. For example:

■ If you pre-translate with ojspc, you should specify a binary output directory
with the ojspc -d option, then archive the directory structure under that
specified directory.

■ If you are archiving binary files produced during previous execution in an
Apache/JServ (on-demand translation) environment, archive the output
directory structure, typically under the default htdocs/_pages directory.

In the target environment, restore the archived directory structure under the
appropriate directory, such as under the htdocs/_pages directory in an
Apache/JServ environment.

Configuring OracleJSP for Execution with Binary Files Only
Set OracleJSP configuration parameters as follows to execute JSP pages when the
.jsp or .sqljsp source is unavailable:

■ bypass_source=true

■ developer_mode=false

Without these settings, OracleJSP will always look for the .jsp or .sqljsp file to
see if it has been modified more recently than the page implementation .class file,
and abort with a "file not found" error if it cannot find the .jsp or .sqljsp file.

With these parameters set appropriately, the end user can invoke a page with the
same URL that would be used if the source file were in place. For an example,
consider an Apache/JServ environment—if the binary files for foo.jsp are in the
htdocs/_pages/_test directory, then the page can be invoked with the
following URL without foo.jsp being present:

http://host:[port]/test/foo.jsp

For how to set configuration parameters, see "OracleJSP Configuration Parameter
Settings" on page A-26.
6-76 JavaServer Pages Developer’s Guide and Reference

Additional JSP Deployment Considerations
WAR Deployment
The Sun Microsystems JavaServer Pages Specification, Version 1.1 supports the
packaging and deployment of Web applications, including JavaServer Pages,
according to the Sun Microsystems Java Servlet Specification, Version 2.2.

In typical JSP 1.1 implementations, JSP pages can be deployed through the WAR
(Web archive) mechanism. WAR files are created using the JAR utility. The JSP
pages can be delivered in source form and are deployed along with any required
support classes and static HTML files.

Oracle9i provides a WAR deployment implementation that adheres to the Sun
Microsystems standard.

Standard WAR Features
According to the servlet 2.2 specification, a Web application includes a deployment
descriptor file—web.xml—that contains information about the JSP pages and other
components of the application. The web.xml file must be included in the WAR file.

The servlet 2.2 specification also defines an XML DTD for web.xml deployment
descriptors and specifies exactly how a servlet container must deploy a Web
application to conform to the deployment descriptor.

Through these logistics, a WAR file is the best way to ensure that a Web application
is deployed into any standard servlet environment exactly as the developer
intended.

Deployment configurations in the web.xml deployment descriptor include
mappings between servlet paths and the JSP pages and servlets that will be
invoked. Many additional features can be specified in web.xml as well, such as
timeout values for sessions, mappings of file name extensions to MIME types, and
mappings of error codes to JSP error pages.

To summarize, the WAR file includes the following:

■ web.xml deployment descriptor

■ JSP pages

■ required JavaBeans and other support classes

■ required static HTML files

■ hierarchical organization (as with any JAR file)

For more information about standard WAR deployment, see the Sun Microsystems
Java Servlet Specification, Version 2.2.
 JSP Translation and Deployment 6-77

Additional JSP Deployment Considerations
Oracle WAR Implementation
Each vendor providing a WAR implementation typically includes the following:

■ a DTD for an auxiliary descriptor, which is used for vendor-specific features in
conjunction with the use of web.xml for standard features

■ a tool that performs the application deployment in the server

This section provides an overview of the Oracle implementation of these features.
For more information about Oracle WAR deployment, see the Oracle9i Servlet Engine
Developer’s Guide.

Oracle Auxiliary Descriptor The web.xml file is a vehicle for standard configuration
instructions for a Web application and is portable to any standard runtime
environment. However, web.xml cannot provide all the information necessary to
deploy an application to a particular servlet container, because each vendor extends
standard functionality with their own set of features. The servlet 2.2 specification
suggests that each vendor provide an additional descriptor file for configuration of
features unique to that vendor’s runtime environment.

Oracle specifies and supports such an additional descriptor, known as the Oracle
auxiliary descriptor. Like the web.xml deployment descriptor, the auxiliary
descriptor is in XML format. Oracle provides a DTD to specify supported elements
and attributes.

Oracle Deployment Tool Oracle provides a tool that deploys a Web application to
Oracle9i for execution in the Oracle9i Servlet Engine. The deployment tool requires
that the application be packaged in a WAR file, and can be invoked in any of the
following ways:

■ from the server, by using an Oracle session shell command (requires you to first
manually upload the WAR file and auxiliary descriptor)

■ from the server, from Java code or a PL/SQL "call spec" (this also requires you
to first manually upload the WAR file and auxiliary descriptor)

■ from any client, by invoking the Oracle deployment servlet (by default, the
servlet class is automatically published to the Oracle9i Servlet Engine in
advance)

■ from an Oracle client, through a client-side deployment script

■ from a non-Oracle client, by executing the deployment tool wrapper directly
from Java
6-78 JavaServer Pages Developer’s Guide and Reference

Additional JSP Deployment Considerations
Deployment of JSP Pages with JDeveloper
Oracle JDeveloper release 3.1 and higher includes a deployment option, "Web
Application to Web Server", that was added specifically for JSP applications.

This option generates a deployment profile that specifies the following:

■ a JAR file containing Business Components for Java (BC4J) classes required by
the JSP application

■ static HTML files required by the JSP application

■ the path to the Web server

The developer can either deploy the application immediately upon creating the
profile, or save the profile for later use.

Note: The client-side scripts and client-side wrapper are just
convenient front ends that invoke the deployment servlet.
 JSP Translation and Deployment 6-79

Additional JSP Deployment Considerations
6-80 JavaServer Pages Developer’s Guide and Reference

 JSP Tag Libraries and the Oracle JML
7

JSP Tag Libraries and the Oracle JML Tags

This chapter discusses custom tag libraries, covering the basic framework that
vendors can use to provide their own libraries and documenting the JML tag library
that OracleJSP provides as a sample. This discussion includes the following topics:

■ Standard Tag Library Framework

■ Overview of the JSP Markup Language (JML) Sample Tag Library

■ JSP Markup Language (JML) Tag Descriptions
 Tags 7-1

Standard Tag Library Framework
Standard Tag Library Framework
Standard JavaServer Pages technology allows vendors to create custom JSP tag
libraries.

A tag library defines a collection of custom actions. The tags can be used directly by
developers in manually coding a JSP page, or automatically by Java development
tools. A tag library must be portable between different JSP container
implementations.

For information beyond what is provided here regarding tag libraries and the
standard JavaServer Pages tag library framework, refer to the following resources:

■ Sun Microsystems JavaServer Pages Specification, Version 1.1

■ Sun Microsystems Javadoc for the javax.servlet.jsp.tagext package, at
the following Web site:

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/jsp/tagext/package-summary.html

Overview of a Custom Tag Library Implementation
A custom tag library is imported into a JSP page using a taglib directive of the
following general form:

<%@ taglib uri="URI" prefix="prefix" %>

Note the following:

■ The tags of a library are defined in a tag library description file, as described in
"Tag Library Description Files" on page 7-11.

■ The URI in the taglib directive specifies where to find the tag library
description file, as described in "The taglib Directive" on page 7-14. It is possible
to use URI shortcuts, as described in "Use of web.xml for Tag Libraries" on
page 7-12.

Note: Do not use the servlet.jar file of the Tomcat 3.1 beta
servlet/JSP implementation if you are using custom tags. The
constructor signature was changed for the class
javax.servlet.jsp.tagext.TagAttributeInfo, which will
result in compilation errors. Instead, use the servlet.jar file that
is provided with OracleJSP or the production version of Tomcat 3.1.
7-2 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework
■ The prefix in the taglib directive is a string of your choosing that you use in
your JSP page with any tag from the library.

Assume the taglib directive specifies a prefix oracust:

<%@ taglib uri="URI" prefix="oracust" %>

Further assume that there is a tag mytag in the library. You might use mytag as
follows:

<oracust:mytag attr1="...", attr2="..." />

Using the oracust prefix informs the JSP translator that mytag is defined in
the tag library description file that can be found at the URI specified in the
above taglib directive.

■ The entry for a tag in the tag library description file provides specifications
about usage of the tag, including whether the tag uses attributes (as mytag
does), and the names of those attributes.

■ The semantics of a tag—the actions that occur as the result of using the tag—are
defined in a tag handler class, as described in "Tag Handlers" on page 7-4. Each
tag has its own tag handler class, and the class name is specified in the tag
library description file.

■ The tag library description file indicates whether a tag uses a body.

As seen above, a tag without a body is used as in the following example:

<oracust:mytag attr1="...", attr2="..." />

By contrast, a tag with a body is used as in the following example:

<oracust:mytag attr1="...", attr2="..." >
 ...body...
</oracust:mytag>

■ A custom tag action can create one or more server-side objects that are available
for use by the tag itself or by other JSP scripting elements, such as scriptlets.
These objects are referred to as scripting variables.

Details regarding the scripting variables that a custom tag uses are defined in a
tag-extra-info class. This is described in "Scripting Variables and Tag-Extra-Info
Classes" on page 7-8.
 JSP Tag Libraries and the Oracle JML Tags 7-3

Standard Tag Library Framework
A tag can create scripting variables with syntax such as in the following
example, which creates the object myobj:

<oracust:mytag id="myobj" attr1="...", attr2="..." />

■ The tag handler of a nested tag can access the tag handler of an outer tag, in
case this is required for any of the processing or state management of the nested
tag. See "Access to Outer Tag Handler Instances" on page 7-10.

The sections that follow provide more information about these topics.

Tag Handlers
A tag handler describes the semantics of the action that results from use of a custom
tag. A tag handler is an instance of a Java class that implements one of two standard
Java interfaces, depending on whether the tag processes a body of statements
(between a start tag and an end tag).

Each tag has its own handler class. By convention, the name of the tag handler class
for a tag abc, for example, is AbcTag.

The tag library description (TLD) file of a tag library specifies the name of the tag
handler class for each tag in the library. (See "Tag Library Description Files" on
page 7-11.)

A tag handler instance is a server-side object used at request time. It has properties
that are set by the JSP container, including the page context object for the JSP page
that uses the custom tag, and a parent tag handler object if the use of this custom
tag is nested within an outer custom tag.

See "Sample Tag Handler Class: ExampleLoopTag.java" on page 7-16 for sample
code of a tag handler class.

Note: The Sun Microsystems JavaServer Pages Specification, Version
1.1 does not mandate whether multiple uses of the same custom tag
within a JSP page should use the same tag handler instance or
different tag handler instances—this implementation detail is left to
the discretion of JSP vendors. OracleJSP uses a separate tag handler
instance for each use of a tag.
7-4 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework
Custom Tag Body Processing
Custom tags, like standard JSP tags, may or may not have a body. And in the case of
a custom tag, even when there is a body, it may not need special handling by the tag
handler.

There are three possible situations:

■ There is no body.

In this case, there is just a single tag, as opposed to a start tag and end tag.
Following is a general example:

<oracust:abcdef attr1="...", attr2="..." />

■ There is a body that does not need special handling by the tag handler.

In this case, there is a start tag and end tag with a body of statements in
between, but the tag handler does not have to process the body—body
statements are passed through for normal JSP processing only. Following is a
general example:

<foo:if cond="<%= ... %>" >
...body executed if cond is true, but not processed by tag handler...
</foo:if>

■ There is a body that needs special handling by the tag handler.

In this case also, there is a start tag and end tag with a body of statements in
between; however, the tag handler must process the body.

<oracust:ghijkl attr1="...", attr2="..." >
...body processed by tag handler...
</oracust:ghijkl>

Integer Constants for Body Processing
The tag handling interfaces that are described in the following sections specify a
doStartTag() method (further described below) that you must implement to
return an appropriate int constant, depending on the situation. The possible return
values are as follows:

■ SKIP_BODY if there is no body or if evaluation and execution of the body
should be skipped

■ EVAL_BODY_INCLUDE if there is a body that does not require special handling
by the tag handler
 JSP Tag Libraries and the Oracle JML Tags 7-5

Standard Tag Library Framework
■ EVAL_BODY_TAG if there is a body that requires special handling by the tag
handler

Handlers for Tags That Do Not Process a Body
For a custom tag that does not have a body, or has a body that does not need special
handling by the tag handler, the tag handler class implements the following
standard interface:

■ javax.servlet.jsp.tagext.Tag

The following standard support class implements the Tag interface and can be used
as a base class:

■ javax.servlet.jsp.tagext.TagSupport

The Tag interface specifies a doStartTag() method and a doEndTag() method.
The tag developer provides code for these methods in the tag handler class, as
appropriate, to be executed as the start tag and end tag, respectively, are
encountered. The JSP page implementation class generated by the OracleJSP
translator includes appropriate calls to these methods.

Action processing—whatever you want the action tag to accomplish—is
implemented in the doStartTag() method. The doEndTag() method would
implement any appropriate post-processing. In the case of a tag without a body,
essentially nothing happens between the execution of these two methods.

The doStartTag() method returns an integer value. For a tag handler class
implementing the Tag interface (either directly or indirectly), this value must be
either SKIP_BODY or EVAL_BODY_INCLUDE (described in "Integer Constants for
Body Processing" above). EVAL_BODY_TAG is illegal for a tag handler class
implementing the Tag interface.

Handlers for Tags That Process a Body
For a custom tag with a body that requires special handling by the tag handler, the
tag handler class implements the following standard interface:

■ javax.servlet.jsp.tagext.BodyTag

The following standard support class implements the BodyTag interface and can be
used as a base class:

■ javax.servlet.jsp.tagext.BodyTagSupport
7-6 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework
The BodyTag interface specifies a doInitBody() method and a doAfterBody()
method in addition to the doStartTag() and doEndTag() methods specified in
the Tag interface.

Just as with tag handlers implementing the Tag interface (described in the
preceding section, "Handlers for Tags That Do Not Process a Body"), the tag
developer implements the doStartTag() method for action processing by the tag,
and the doEndTag() method for any post-processing.

The doStartTag() method returns an integer value. For a tag handler class
implementing the BodyTag interface (directly or indirectly), this value must be
either SKIP_BODY or EVAL_BODY_TAG (described in "Integer Constants for Body
Processing" on page 7-5). EVAL_BODY_INCLUDE is illegal for a tag handler class
implementing the BodyTag interface.

In addition to implementing the doStartTag() and doEndTag() methods, the
tag developer, as appropriate, provides code for the doInitBody() method, to be
invoked before the body is evaluated, and the doAfterBody() method, to be
invoked after each evaluation of the body. (The body could be evaluated multiple
times, such as at the end of each iteration of a loop.) The JSP page implementation
class generated by the OracleJSP translator includes appropriate calls to all of these
methods.

After the doStartTag() method is executed, the doInitBody() and
doAfterBody() methods are executed if the doStartTag() method returned
EVAL_BODY_TAG.

The doEndTag() method is executed after any body processing, when the end tag
is encountered.

For custom tags that must process a body, the
javax.servlet.jsp.tagext.BodyContent class is available for use. This is a
subclass of javax.servlet.jsp.JspWriter that can be used to process body
evaluations so that they can re-extracted later. The BodyTag interface includes a
setBodyContent() method that can be used by the JSP container to give a
BodyContent handle to a tag handler instance.
 JSP Tag Libraries and the Oracle JML Tags 7-7

Standard Tag Library Framework
Scripting Variables and Tag-Extra-Info Classes
A custom tag action can create one or more server-side objects, known as scripting
variables, that are available for use by the tag itself or by other scripting elements,
such as scriptlets and other tags.

Details regarding scripting variables that a custom tag defines must be specified in a
subclass of the standard javax.servlet.jsp.tagext.TagExtraInfo abstract
class. This document refers to such a subclass as a tag-extra-info class.

The JSP container uses tag-extra-info instances during translation. (The tag library
description file, specified in the taglib directive that imports the library into a JSP
page, specifies the tag-extra-info class to use, if applicable, for any given tag.)

A tag-extra-info class has a getVariableInfo() method to retrieve names and
types of the scripting variables that will be assigned during HTTP requests. The JSP
translator calls this method during translation, passing it an instance of the
standard javax.servlet.jsp.tagext.TagData class. The TagData instance
specifies attribute values set in the JSP statement that uses the custom tag.

This section covers the following topics:

■ Defining Scripting Variables

■ Scripting Variable Scopes

■ Tag-Extra-Info Classes and the getVariableInfo() Method

Defining Scripting Variables
Objects that are defined explicitly in a custom tag can be referenced in other actions
through the page context object, using the object ID as a handle. Consider the
following example:

<oracust:foo id="myobj" attr1="..." attr2="..." />

This statement results in the object myobj being available to any scripting elements
between the tag and the end of the page. The id attribute is a translation-time
attribute. The tag developer provides a tag-extra-info class that will be used by the
JSP container. Among other things, the tag-extra-info class specifies what class to
instantiate for the myobj object.

The JSP container enters myobj into the page context object, where it can later be
obtained by other tags or scripting elements using syntax such as the following:

<oracust:bar ref="myobj" />
7-8 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework
The myobj object is passed through the tag handler instances for foo and bar. All
that is required is knowledge of the name of the object (myobj).

Scripting Variable Scopes
Specify the scope of a scripting variable in the tag-extra-info class of the tag that
creates the variable. It can be one of the following int constants:

■ NESTED—if the scripting variable is available between the start tag and end tag
of the action that defines it

■ AT_BEGIN—if the scripting variable is available from the start tag until the end
of the page

■ AT_END—if the scripting variable is available from the end tag until the end of
the page

Tag-Extra-Info Classes and the getVariableInfo() Method
You must create a tag-extra-info class for any custom tag that creates scripting
variables. The class describes the scripting variables and must be a subclass of the
standard javax.servlet.jsp.tagext.TagExtraInfo abstract class.

The key method of the TagExtraInfo class is getVariableInfo(), which is
called by the JSP translator and returns an array of instances of the standard
javax.servlet.jsp.tagext.VariableInfo class (one array instance for each
scripting variable the tag creates).

The tag-extra-info class constructs each VariableInfo instance with the following
information regarding the scripting variable:

■ its name

■ its Java type (cannot be a primitive type)

■ a boolean indicating whether it is a newly declared variable

■ its scope

Important: Note that id and ref are merely sample attribute
names; there are no special predefined semantics for these
attributes. It is up to the tag handler to define attribute names and
create and retrieve objects in the page context.
 JSP Tag Libraries and the Oracle JML Tags 7-9

Standard Tag Library Framework
See "Sample Tag-Extra-Info Class: ExampleLoopTagTEI.java" on page 7-17 for
sample code of a tag-extra-info class.

Access to Outer Tag Handler Instances
Where nested custom tags are used, the tag handler instance of the nested tag has
access to the tag handler instance of the outer tag, which may be useful in any
processing and state management performed by the nested tag.

This functionality is supported through the static findAncestorWithClass()
method of the javax.servlet.jsp.tagext.TagSupport class. Even though
the outer tag handler instance is not named in the page context object, it is
accessible because it is the closest enclosing instance of a given tag handler class.

Consider the following JSP code example:

<foo:bar1 attr="abc" >
 <foo:bar2 />
</foo:bar1>

Within the code of the bar2 tag handler class (class Bar2Tag, by convention), you
can have a statement such as the following:

Tag bar1tag = TagSupport.findAncestorWithClass(this, Bar1Tag.class);

The findAncestorWithClass() method takes the following as input:

■ the this object that is the class handler instance from which
findAncestorWithClass() was called (a Bar2Tag instance in the example)

■ the name of the bar1 tag handler class (presumed to be Bar1Tag in the
example), as a java.lang.Class instance

Important: As of OracleJSP release 1.1.2.x, the
getVariableInfo() method can return either a fully qualified
class name (FQCN) or a partially qualified class name (PQCN) for
the Java type of the scripting variable. FQCNs were required in
previous releases, and are still preferred in order to avoid confusion
in case there are duplicate class names between packages.

Note that primitive types are not supported.
7-10 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework
The findAncestorWithClass() method returns an instance of the appropriate
tag handler class, in this case Bar1Tag, as a javax.servlet.jsp.tagext.Tag
instance.

It is useful for a Bar2Tag instance to have access to the outer Bar1Tag instance in
case the Bar2Tag needs the value of a bar1 tag attribute or needs to call a method
on the Bar1Tag instance.

Tag Library Description Files
A tag library description (TLD) file is an XML document that contains information
about a tag library and about individual tags of the library. The name of a TLD file
has the .tld extension.

A JSP container uses the TLD file in determining what action to take when it
encounters a tag from the library.

A tag entry in the TLD file includes the following:

■ name of the custom tag

■ name of the corresponding tag handler class

■ name of the corresponding tag-extra-info class (if applicable)

■ information indicating how the tag body (if any) should be processed

■ information about the attributes of the tag (the attributes that you specify
whenever you use the custom tag)

Here is a sample TLD file entry for the tag myaction:

<tag>
 <name>myaction</name>
 <tagclass>examples.MyactionTag</tagclass>
 <teiclass>examples.MyactionTagExtraInfo</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Perform a server-side action (one mandatory attr; one optional)
 </info>
 <attribute>
 <name>attr1</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>attr2</name>
 <required>false</required>
 JSP Tag Libraries and the Oracle JML Tags 7-11

Standard Tag Library Framework
 </attribute>
</tag>

According to this entry, the tag handler class is MyactionTag and the
tag-extra-info class is MyactionTagExtraInfo. The attribute attr1 is required;
the attribute attr2 is optional.

The bodycontent parameter indicates how the tag body (if any) should be
processed. There are three valid values:

■ A value of empty indicates that the tag uses no body.

■ A value of JSP indicates that the tag body should be processed as JSP source
and translated.

■ A value of tagdependent indicates that the tag body should not be translated.
Any text in the body is treated as static text.

The taglib directive in a JSP page informs the JSP container where to find the TLD
file. (See "The taglib Directive" on page 7-14.)

For more information about tag library description files, see the Sun Microsystems
JavaServer Pages Specification, Version 1.1.

Use of web.xml for Tag Libraries
The Sun Microsystems Java Servlet Specification, Version 2.2 describes a standard
deployment descriptor for servlets—the web.xml file. JSP pages can use this file in
specifying the location of a JSP tag library description file.

For JSP tag libraries, the web.xml file can include a taglib element and two
subelements:

■ taglib-uri

■ taglib-location

The taglib-location subelement indicates the application-relative location (by
starting with "/") of the tag library description file.

Note: In the Tomcat 3.1 servlet/JSP implementation, the TLD file
bodycontent parameter for a given tag is not read if the tag itself
(in the JSP page) has no body. It is possible, therefore, to have an
invalid bodycontent value in your TLD file (such as none instead
of empty) without realizing it. Using the file in another JSP
environment, such as OracleJSP, would then result in errors.
7-12 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework
The taglib-uri subelement indicates a "shortcut" URI to use in taglib
directives in your JSP pages, with this URI being mapped to the TLD file location
specified in the accompanying taglib-location subelement. (The term URI,
universal resource indicator, is somewhat equivalent to the term URL, universal
resource locator, but is more generic.)

Following is a sample web.xml entry for a tag library description file:

<taglib>
 <taglib-uri>/oracustomtags</taglib-uri>
 <taglib-location>/WEB-INF/oracustomtags/tlds/MyTLD.tld</taglib-location>
</taglib>

This makes /oracustomtags equivalent to
/WEB-INF/oracustomtags/tlds/MyTLD.tld in taglib directives in your JSP
pages. See "Using a Shortcut URI for the TLD File" below for an example.

See the Sun Microsystems Java Servlet Specification, Version 2.2 and the Sun
Microsystems JavaServer Pages Specification, Version 1.1 for more information about
the web.xml deployment descriptor and its use for tag library description files.

Important: When a JSP application uses a web.xml file, you must
deploy web.xml with the application. Treat it as a Java resource
file.

Notes:

■ Do not use the sample web.xml file from the Tomcat 3.1
servlet/JSP implementation. It introduces new elements that
will not pass the standard DTD XML validation.

■ Do not use the term "urn" instead of "uri" in a web.xml file.
Some JSP implementations allow this (such as Tomcat 3.1), but
using "urn" will not pass the standard DTD XML validation.
 JSP Tag Libraries and the Oracle JML Tags 7-13

Standard Tag Library Framework
The taglib Directive
Import a custom library into a JSP page using a taglib directive, of the following
form:

<%@ taglib uri="URI" prefix="prefix" %>

For the URI, you have the following options:

■ Specify a shortcut URI, as defined in a web.xml file (see "Use of web.xml for
Tag Libraries" above).

■ Fully specify the tag library description (TLD) file name and location.

Using a Shortcut URI for the TLD File
Assume the following web.xml entry for a tag library defined in the tag library
description file MyTLD.tld:

<taglib>
 <taglib-uri>/oracustomtags</taglib-uri>
 <taglib-location>/WEB-INF/oracustomtags/tlds/MyTLD.tld</taglib-location>
</taglib>

Given this example, the following directive in your JSP page results in the JSP
container finding the /oracustomtags URI in web.xml and, therefore, finding
the accompanying name and location of the tag library description file
(MyTLD.tld):

<%@ taglib uri="/oracustomtags" prefix="oracust" %>

This statement allows you to use any of the tags of this custom tag library in a JSP
page.

Fully Specifying the TLD File Name and Location
If you do not want your JSP application to depend on a web.xml file for its use of a
tag library, taglib directives can fully specify the name and location of the tag
library description file, as follows:

<%@ taglib uri="/WEB-INF/oracustomtags/tlds/MyTLD.tld" prefix="oracust" %>

The location is specified as an application-relative location (by starting with "/", as
in this example). See "Requesting a JSP Page" on page 1-8 for related discussion.
7-14 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework
Alternatively, you can specify a .jar file instead of a .tld file in the taglib
directive, where the .jar file contains a tag library description file. The tag library
description file must be located and named as follows when you create the JAR file:

META-INF/taglib.tld

Then the taglib directive might be as follows, for example:

<%@ taglib uri="/WEB-INF/oracustomtags/tlds/MyTLD.jar" prefix="oracust" %>

End-to-End Example: Defining and Using a Custom Tag
This section provides an end-to-end example of the definition and use of a custom
tag, loop, that is used to iterate through the tag body a specified number of times.

Included in the example are the following:

■ JSP source for a page that uses the tag

■ source code for the tag handler class

■ source code for the tag-extra-info class

■ the tag library description file

Sample JSP Page: exampletag.jsp
Following is a sample JSP page that uses the loop tag, specifying that the outer
loop be executed five times and the inner loop three times:

examplestag.jsp
<%@ taglib prefix="foo" uri="/WEB-INF/exampletag.tld" %>
<% int num=5; %>

<pre>
<foo:loop index="i" count="<%=num%>">
body1here: i expr: <%=i%> i property: <jsp:getProperty name="i" property="value" />
 <foo:loop index="j" count="3">
 body2here: j expr: <%=j%>
 i property: <jsp:getProperty name="i" property="value" />
 j property: <jsp:getProperty name="j" property="value" />
 </foo:loop>
</foo:loop>
</pre>
 JSP Tag Libraries and the Oracle JML Tags 7-15

Standard Tag Library Framework
Sample Tag Handler Class: ExampleLoopTag.java
This section provides source code for the tag handler class, ExampleLoopTag.
Note the following:

■ The doStartTag() method returns the integer constant EVAL_BODY_TAG, so
that the tag body (essentially, the loop) is processed.

■ After each pass through the loop, the doAfterBody() method increments the
counter. It returns EVAL_BODY_TAG if there are more iterations left and
SKIP_BODY after the last iteration.

Here is the code:

package examples;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.util.Hashtable;
import java.io.Writer;
import java.io.IOException;
import oracle.jsp.jml.JmlNumber;

public class ExampleLoopTag
 extends BodyTagSupport
{

 String index;
 int count;
 int i=0;
 JmlNumber ib=new JmlNumber();

 public void setIndex(String index)
 {
 this.index=index;
 }
 public void setCount(String count)
 {
 this.count=Integer.parseInt(count);
 }

 public int doStartTag() throws JspException {
 return EVAL_BODY_TAG;
 }

 public void doInitBody() throws JspException {
 pageContext.setAttribute(index, ib);
7-16 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework
 i++;
 ib.setValue(i);
 }

 public int doAfterBody() throws JspException {
 try {
 if (i >= count) {
 bodyContent.writeOut(bodyContent.getEnclosingWriter());
 return SKIP_BODY;
 } else
 pageContext.setAttribute(index, ib);
 i++;
 ib.setValue(i);
 return EVAL_BODY_TAG;
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 }
}

Sample Tag-Extra-Info Class: ExampleLoopTagTEI.java
This section provides the source code for the tag-extra-info class that describes the
scripting variable used by the loop tag.

A VariableInfo instance is constructed that specifies the following for the
variable:

■ The variable name is according to the index attribute.

■ The variable is of the type oracle.jsp.jml.JmlNumber (this must be
specified as a fully qualified class name).

■ The variable is newly declared.

■ The variable scope is NESTED.

In addition, the tag-extra-info class has an isValid() method that determines
whether the count attribute is valid—it must be an integer.

package examples;

import javax.servlet.jsp.tagext.*;

public class ExampleLoopTagTEI extends TagExtraInfo {
 public VariableInfo[] getVariableInfo(TagData data) {
 JSP Tag Libraries and the Oracle JML Tags 7-17

Standard Tag Library Framework
 return new VariableInfo[]
 {
 new VariableInfo(data.getAttributeString("index"),
 "oracle.jsp.jml.JmlNumber",
 true,
 VariableInfo.NESTED)
 };
 }

 public boolean isValid(TagData data)
 {
 String countStr=data.getAttributeString("count");
 if (countStr!=null) // for request time case
 {
 try {
 int count=Integer.parseInt(countStr);
 }
 catch (NumberFormatException e)
 {
 return false;
 }
 }
 return true;
 }
}

Sample Tag Library Description File: exampletag.tld
This section presents the tag library description (TLD) file for the tag library. In this
example, the library consists of only the one tag, loop.

This TLD file specifies the following for the loop tag:

■ the tag handler class—examples.ExampleLoopTag

■ the tag-extra-info class—examples.ExampleLoopTagTEI

■ bodycontent specification of JSP

This means the JSP translator should process and translate the body code.

■ attributes index and count, both mandatory

The count attribute can be a request-time JSP expression.
7-18 JavaServer Pages Developer’s Guide and Reference

Standard Tag Library Framework
Here is the TLD file:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tab library descriptor -->

<taglib>
 <!-- after this the default space is
 "http://java.sun.com/j2ee/dtds/jsptaglibrary_1_2.dtd"
 -->

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>simple</shortname>
<!--
 there should be no <urn></urn> here
-->
 <info>
 A simple tab library for the examples
 </info>

 <!-- example tag -->
 <!-- for loop -->
 <tag>
 <name>loop</name>
 <tagclass>examples.ExampleLoopTag</tagclass>
 <teiclass>examples.ExampleLoopTagTEI</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>for loop</info>
 <attribute>
 <name>index</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>count</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

</taglib>
 JSP Tag Libraries and the Oracle JML Tags 7-19

Overview of the JSP Markup Language (JML) Sample Tag Library
Overview of the JSP Markup Language (JML) Sample Tag Library
OracleJSP supplies the JSP Markup Language (JML) sample tag library, which is
portable to any standard JSP environment. JML tags, as with those of any standard
tag library, are completely compatible with regular JSP script and can be used in
any JSP page.

Many of the JML tags are intended to simplify coding syntax for JSP developers
who are not proficient with Java. There are also tags for XML transformations (as
described in "JML Tags for XSL Stylesheets" on page 5-10), bean binding, and
general utility.

The following topics are covered here:

■ JML Tag Library Philosophy

■ JML Tag Categories

■ JML Tag Library Description File and taglib Directive

Note the following requirements for using JML tags:

■ Install the file ojsputil.jar and include it in your classpath. This file is
provided with the OracleJSP installation.

■ Make sure that the tag library description file, jml.tld, is deployed with the
application and is in the location specified in the taglib directives of your JSP
pages. See "JML Tag Library Description File and taglib Directive" on page 7-22.

Notes:

■ OracleJSP also provides a tag library for SQL functionality. This
is described in "OracleJSP Tag Library for SQL" on page 5-24.

■ Prior to OracleJSP release 1.1.0.0.0 and the release of the JSP 1.1
specification, OracleJSP supported JML tags only as Oracle
extensions. (The tag library framework was not added to the
JavaServer Pages specification until JSP 1.1.) For these releases,
Oracle-specific JML tag processing was built into the OracleJSP
translator. This is referred to as "compile-time JML support"
and is described in Appendix C, "Compile-Time JML Tag
Support".
7-20 JavaServer Pages Developer’s Guide and Reference

Overview of the JSP Markup Language (JML) Sample Tag Library
JML Tag Library Philosophy
JavaServer Pages technology is intended for two separate developer communities:

■ those whose primary skill is Java programming

■ those whose primary skill is in designing static content, particularly in HTML,
and who may have limited scripting experience

The JML tag library is designed to allow most Web developers, with little or no
knowledge of Java, to assemble JSP applications with a full complement of program
flow-control features.

This model presumes that the business logic is contained in JavaBeans that are
developed separately by a Java developer.

JML Tag Categories
The JML tag library covers a wide feature set. The major functional categories are
summarized in Table 7–1.

Table 7–1 JML Tag Functional Categories

Tag Categories Tags Functionality

bean binding tags useVariable
useForm
useCookie
remove

These tags are to declare or
undeclare a JavaBean at a specified
JSP scope. See "Bean Binding Tag
Descriptions" on page 7-30.

logic/flow control tags if
choose..when..[otherwise]
foreach
return
flush

These tags offer simplified syntax to
define code flow, such as for
iterative loops or conditional
branches. See "Logic and Flow
Control Tag Descriptions" on
page 7-34.

XML transformation tags transform
styleSheet

These synonymous tags simplify
the process of applying an XSL
stylesheet to all or part of JSP page
output. See "JML Tags for XSL
Stylesheets" on page 5-10. (The tags
are identical in effect. You need only
one or the other.)
 JSP Tag Libraries and the Oracle JML Tags 7-21

Overview of the JSP Markup Language (JML) Sample Tag Library
JML Tag Library Description File and taglib Directive
As with any tag library following the JSP 1.1 specification, the tags of the JML
library are specified in an XML-style tag library description (TLD) file.

This TLD file is provided with the OracleJSP sample applications. It must be
deployed with any JSP application that uses JML tags, and specified in a taglib
directive for any page using JML tags.

JML taglib Directive
A JSP page using JML tags must specify the TLD file in a taglib directive that
supplies a standard universal resource indicator (URI) to locate the file. The URI
syntax is typically application-relative, such as in the following example:

<%@ taglib uri="/WEB-INF/jml.tld" prefix="jml" %>

Alternatively, instead of using the full path to the TLD file, as in this example, you
can specify a URI shortcut in the web.xml file then use the shortcut in your
taglib directives. See "Use of web.xml for Tag Libraries" on page 7-12.

For general information about tag library description files, see "Tag Library
Description Files" on page 7-11.

JML TLD File Listing
This section lists the entire TLD file for the JML tag library, as supported in
OracleJSP release 1.1.2.x.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<!-- a tab library descriptor -->

<taglib>
 <!-- after this the default space is
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd"
 -->

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>jml</shortname>
 <info>
 Oracle’s jml tag library. Not all of the jml
7-22 JavaServer Pages Developer’s Guide and Reference

Overview of the JSP Markup Language (JML) Sample Tag Library
 tag’s available in the Oracle JSP environment
 are provided in this library. No jsp: tags are
 duplicated, some tags are unavailable, and some tags
 have stricter syntax. No bean expressions are supported.

 The differences are:
 *-jml:call - not available
 * jml:choose - works as documented
 * jml:flush - works as documented
 * jml:for - works as documented
 * jml:foreach - the type attribute is required, otherwise,
 as documented
 *!jml:forward - use jsp:forward
 *!jml:getProperty - use jsp:getProperty
 * jml:if - works as documented
 *!jml:include - use jsp:include
 *-jml:lock - not available
 *!jml:plugin - use jsp:plugin
 * jml:print - the expression to print must be supplied as
 an attribute. i.e. the tag cannot have a body
 * jml:remove - works as documented
 * jml:return - works as documented
 *-jml:set - not available
 *!jml:setProperty - use jsp:setProperty
 * jml:styleSheet - works as documented
 * jml:transform - works as documented
 *!jml:useBean - use jsp:useBean
 * jml:useCookie - works as documented
 * jml:useForm - works as documented
 * jml:useVariable - works as documented
 </info>

 <!-- The choose tag -->
 <tag>
 <name>choose</name>
 <tagclass>oracle.jsp.jml.tagext.JmlChoose</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 The outer tag of a multiple choice logic block,
 choose
 when condition1
 when condition2
 otherwise
 end choose
 </info>
 JSP Tag Libraries and the Oracle JML Tags 7-23

Overview of the JSP Markup Language (JML) Sample Tag Library
 </tag>

 <!-- The flush tag -->
 <tag>
 <name>flush</name>
 <tagclass>oracle.jsp.jml.tagext.JmlFlush</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
 Flush the current JspWriter
 </info>
 </tag>

 <!-- The for tag -->
 <tag>
 <name>for</name>
 <tagclass>oracle.jsp.jml.tagext.JmlFor</tagclass>
 <teiclass>oracle.jsp.jml.tagext.JmlForTEI</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
 A simple for loop
 </info>

 <attribute>
 <name>id</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>from</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>to</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <!-- The foreach tag -->
 <tag>
 <name>foreach</name>
 <tagclass>oracle.jsp.jml.tagext.JmlForeach</tagclass>
 <teiclass>oracle.jsp.jml.tagext.JmlForeachTEI</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>
7-24 JavaServer Pages Developer’s Guide and Reference

Overview of the JSP Markup Language (JML) Sample Tag Library
 A foreach loop for iterating arrays, enumerations,
 and vector’s.
 </info>

 <attribute>
 <name>id</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>in</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>limit</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <!-- The if tag -->
 <tag>
 <name>if</name>
 <tagclass>oracle.jsp.jml.tagext.JmlIf</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 A classic if
 </info>

 <attribute>
 <name>condition</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <!-- The otherwise tag -->
 <tag>
 <name>otherwise</name>
 <tagclass>oracle.jsp.jml.tagext.JmlOtherwise</tagclass>
 JSP Tag Libraries and the Oracle JML Tags 7-25

Overview of the JSP Markup Language (JML) Sample Tag Library
 <bodycontent>JSP</bodycontent>
 <info>
 (optional) final part of a choose block
 </info>
 </tag>

 <!-- The print tag -->
 <tag>
 <name>print</name>
 <tagclass>oracle.jsp.jml.tagext.JmlPrint</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
 print the expression specified in the eval attribute
 </info>
 <attribute>
 <name>eval</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <!-- The remove tag -->
 <tag>
 <name>remove</name>
 <tagclass>oracle.jsp.jml.tagext.JmlRemove</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
 remove the specified object from the pageContext
 </info>
 <attribute>
 <name>id</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>scope</name>
 <required>false</required>
 </attribute>
 </tag>

 <!-- The return tag -->
 <tag>
 <name>return</name>
 <tagclass>oracle.jsp.jml.tagext.JmlReturn</tagclass>
 <bodycontent>empty</bodycontent>
 <info>
7-26 JavaServer Pages Developer’s Guide and Reference

Overview of the JSP Markup Language (JML) Sample Tag Library
 Skip the rest of the page
 </info>
 </tag>

 <!-- The styleSheet tag -->
 <tag>
 <name>styleSheet</name>
 <tagclass>oracle.jsp.jml.tagext.JmlStyleSheet</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Transform the body of the tag using a stylesheet
 </info>
 <attribute>
 <name>href</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <!-- The transform tag -->
 <tag>
 <name>transform</name>
 <tagclass>oracle.jsp.jml.tagext.JmlStyleSheet</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Transform the body of the tag using a stylesheet
 </info>
 <attribute>
 <name>href</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <!-- The useCookie tag -->
 <tag>
 <name>useCookie</name>
 <tagclass>oracle.jsp.jml.tagext.JmlUseCookie</tagclass>
 <teiclass>oracle.jsp.jml.tagext.JmlUseTEI</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 create a jml variable and initialize it to a cookie value
 </info>
 <attribute>
 <name>id</name>
 JSP Tag Libraries and the Oracle JML Tags 7-27

Overview of the JSP Markup Language (JML) Sample Tag Library
 <required>true</required>
 </attribute>
 <attribute>
 <name>scope</name>
 <required>false</required>
 </attribute>
 <attribute>
 <name>type</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>cookie</name>
 <required>true</required>
 </attribute>
 </tag>

 <!-- The useForm tag -->
 <tag>
 <name>useForm</name>
 <tagclass>oracle.jsp.jml.tagext.JmlUseForm</tagclass>
 <teiclass>oracle.jsp.jml.tagext.JmlUseTEI</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 create a jml variable and initialize it to a parameter value
 </info>
 <attribute>
 <name>id</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>scope</name>
 <required>false</required>
 </attribute>
 <attribute>
 <name>type</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>param</name>
 <required>true</required>
 </attribute>
 </tag>

 <!-- The useVariable tag -->
 <tag>
7-28 JavaServer Pages Developer’s Guide and Reference

Overview of the JSP Markup Language (JML) Sample Tag Library
 <name>useVariable</name>
 <tagclass>oracle.jsp.jml.tagext.JmlUseVariable</tagclass>
 <teiclass>oracle.jsp.jml.tagext.JmlUseTEI</teiclass>
 <bodycontent>empty</bodycontent>
 <info>
 create a jml variable and initialize it to a parameter value
 </info>
 <attribute>
 <name>id</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>scope</name>
 <required>false</required>
 </attribute>
 <attribute>
 <name>type</name>
 <required>true</required>
 </attribute>
 <attribute>
 <name>value</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <!-- The when tag -->
 <tag>
 <name>when</name>
 <tagclass>oracle.jsp.jml.tagext.JmlWhen</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 one part of a choose block, see choose
 </info>
 <attribute>
 <name>condition</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

</taglib>
 JSP Tag Libraries and the Oracle JML Tags 7-29

JSP Markup Language (JML) Tag Descriptions
JSP Markup Language (JML) Tag Descriptions
This section documents the JML tags that are supported in the OracleJSP 1.1.2.x
runtime implementation, following the JSP 1.1 specification. They are categorized as
follows:

■ Bean Binding Tag Descriptions

■ Logic and Flow Control Tag Descriptions

For an elementary sample using some of the tags described here, see "JML Tag
Sample—hellouser_jml.jsp" on page 9-31.

Tags for XML transformations are documented separately, in "JML Tags for XSL
Stylesheets" on page 5-10.

Syntax Symbology and Notes
For the syntax documentation in the tag descriptions, note the following:

■ Italics indicate that you must specify a value or string.

■ Optional attributes are enclosed in square brackets: [...]

■ Default values of optional attributes are indicated in bold.

■ Choices in how to specify an attribute are separated by vertical bars: |

■ The prefix "jml:" is used. This is by convention but is not required. You can
specify any desired prefix in your taglib directive.

Bean Binding Tag Descriptions
This section documents the following JML tags, which are used for bean-binding
operations:

■ JML useVariable Tag

■ JML useForm Tag

■ JML useCookie Tag

■ JML remove Tag

JML useVariable Tag
This tag offers a convenient alternative to the jsp:useBean tag for declaring
simple variables.
7-30 JavaServer Pages Developer’s Guide and Reference

JSP Markup Language (JML) Tag Descriptions
Syntax

<jml:useVariable id = "beanInstanceName"
 [scope = "page | request | session | application"]
 type = "string | boolean | number | fpnumber"
 [value = "stringLiteral | <%= jspExpression %>"] />

Attributes

■ id—Names the variable being declared. This attribute is required.

■ scope—Defines the duration or scope of the variable (as with a jsp:useBean
tag). This attribute is optional; the default scope is page.

■ type—Specifies the type of the variable. The type specifications refer to
JmlString, JmlBoolean, JmlNumber, or JmlFPNumber. This attribute is
required.

■ value—Allows the variable to be set directly in the declaration, as either a
string literal or a JSP expression enclosed in <%=... %> syntax. This attribute
is optional. If it is not specified, the value remains the same as when it was last
set (if it already exists) or is initialized with a default value. If it is specified,
then the value is always set, regardless of whether this declaration instantiates
the object or merely acquires it from the named scope.

Example Consider the following example:

<jml:useVariable id = "isValidUser" type = "boolean" value = "<%= dbConn.isValid() %>" scope = "session" />

This is equivalent to the following:

<jsp:useBean id = "isValidUser" class = "oracle.jsp.jml.JmlBoolean" scope = "session" />
<jsp:setProperty name="isValidUser" property="value" value = "<%= dbConn.isValid() %>" />

JML useForm Tag
This tag provides a convenient syntax for declaring variables and setting them to
values passed in from the request.

Syntax

<jml:useForm id = "beanInstanceName"
 [scope = "page | request | session | application"]
 [type = "string | boolean | number | fpnumber"]
 param = "requestParameterName" />
 JSP Tag Libraries and the Oracle JML Tags 7-31

JSP Markup Language (JML) Tag Descriptions
Attributes

■ id—Names the variable being declared or referenced. This attribute is required.

■ scope—Defines the duration or scope of the variable (as with a jsp:useBean
tag). This attribute is optional; the default scope is page.

■ type—Specifies the type of the variable. The type specifications refer to
JmlString, JmlBoolean, JmlNumber, or JmlFPNumber. This attribute is
required.

■ param—Specifies the name of the request parameter whose value is used in
setting the variable. This attribute is required. If the request parameter exists,
then the variable value is always updated, regardless of whether this
declaration brings the variable into existence. If the request parameter does not
exist, then the variable value remains unchanged.

Example The following example sets a session variable named user of the type
string to the value of the request parameter named user.

<jml:useForm id = "user" type = "string" param = "user" scope = "session" />

This is equivalent to the following:

<jsp:useBean id = "user" class = "oracle.jsp.jml.JmlString" scope = "session" />
<jsp:setProperty name="user" property="value" param = "user" />

JML useCookie Tag
This tag offers a convenient syntax for declaring variables and setting them to
values contained in cookies.

Syntax

<jml:useCookie id = "beanInstanceName"
 [scope = "page | request | session | application"]
 [type = "string | boolean | number | fpnumber"]
 cookie = "cookieName" />

Attributes

■ id—Names the variable being declared or referenced. This attribute is required.

■ scope—Defines the duration or scope of the variable. This attribute is optional;
the default scope is page.
7-32 JavaServer Pages Developer’s Guide and Reference

JSP Markup Language (JML) Tag Descriptions
■ type—Identifies the type of the variable (the type specifications refer to
JmlString, JmlBoolean, JmlNumber, or JmlFPNumber). This attribute is
optional; the default setting is string.

■ cookie—Specifies the name of the cookie whose value is used in setting this
variable. This attribute is required. If the cookie exists, then the variable value is
always updated, regardless of whether this declaration brings the variable into
existence. If the cookie does not exist, then the variable value remains
unchanged.

Example The following example sets a request variable named user of the type
string to the value of the cookie named user.

<jml:useCookie id = "user" type = "string" cookie = "user" scope = "request" />

This is equivalent to the following:

<jsp:useBean id = "user" class = "oracle.jsp.jml.JmlString" scope = "request" />
<%
 Cookies [] cookies = request.getCookies();
 for (int i = 0; i < cookies.length; i++) {
 if (cookies[i].getName().equals("user")) {
 user.setValue(cookies[i].getValue());
 break;
 }
 }
%>

JML remove Tag
This tag removes an object from its scope.

Syntax

<jml:remove id = "beanInstanceName"
 [scope = "page | request | session | application"] />

Attributes

■ id—Specifies the name of the bean being removed. This attribute is required.

■ scope—This attribute is optional. If not specified, then scopes are searched in
the following order: 1) page, 2) request, 3) session, 4) application. The
first object whose name matches id is removed.
 JSP Tag Libraries and the Oracle JML Tags 7-33

JSP Markup Language (JML) Tag Descriptions
Example The following example removes the session user object:

<jml:remove id = "user" scope = "session" />

This is equivalent to the following:

<% session.removeValue("user"); %>

Logic and Flow Control Tag Descriptions
This section documents the following JML tags, which are used for logic and flow
control:

■ JML if Tag

■ JML choose...when...[otherwise] Tags

■ JML for Tag

■ JML foreach Tag

■ JML return Tag

■ JML flush Tag

These tags, which are intended for developers without extensive Java experience,
can be used in place of Java logic and flow control syntax, such as iterative loops
and conditional branches.

JML if Tag
This tag evaluates a single conditional statement. If the condition is true, then the
body of the if tag is executed.

Syntax

<jml:if condition = "<%= jspExpression %>" >
 ...body of if tag (executed if the condition is true)...
</jml:if>

Attributes

■ condition—Specifies the conditional expression to be evaluated. This
attribute is required.
7-34 JavaServer Pages Developer’s Guide and Reference

JSP Markup Language (JML) Tag Descriptions
Example The following e-commerce example displays information from a user’s
shopping cart. The code checks to see if the variable holding the current T-shirt
order is empty. If not, then the size that the user has ordered is displayed. Assume
currTS is of type JmlString.

<jml:if condition = "<%= !currTS.isEmpty() %>" >
 <S>(size: <%= currTS.getValue().toUpperCase() %>)</S>
</jml:if>

JML choose...when...[otherwise] Tags
The choose tag, with associated when and otherwise tags, provides a multiple
conditional statement.

The body of the choose tag contains one or more when tags, where each when tag
represents a condition. For the first when condition that is true, the body of that
when tag is executed. (A maximum of one when body is executed.)

If none of the when conditions are true, and if the optional otherwise tag is
specified, then the body of the otherwise tag is executed.

Syntax

<jml:choose>
 <jml:when condition = "<%= jspExpression %>" >
 ...body of 1st when tag (executed if the condition is true)...
 </jml:when>
 ...
 [...optional additional when tags...]
 [<jml:otherwise>
 ...body of otherwise tag (executed if all when conditions false)...
 </jml:otherwise>]
</jml:choose>

Attributes The when tag uses the following attribute (the choose and otherwise
tags have no attributes):

■ condition—Specifies the conditional expression to be evaluated. This
attribute is required.

Example The following e-commerce example displays information from a user's
shopping cart. This code checks to see if anything has been ordered. If so, the
current order is displayed; otherwise, the user is asked to shop again. (This example
 JSP Tag Libraries and the Oracle JML Tags 7-35

JSP Markup Language (JML) Tag Descriptions
omits the code to display the current order.) Presume orderedItem is of the type
JmlBoolean.

<jml:choose>
 <jml:when condition = "<%= orderedItem.getValue() %>" >
 You have changed your order:
 -- output the current order --
 </jml:when>
 <jml:otherwise>
 Are you sure we can’t interest you in something, cheapskate?
 </jml:otherwise>
</jml:choose>

JML for Tag
This tag provides the ability to iterate through a loop, as with a Java for loop.

The id attribute is a local loop variable of the type java.lang.Integer that
contains the value of the current range element. The range starts at the value
expressed in the from attributed and is incremented by one after each execution of
the body of the loop, until it exceeds the value expressed in the to attribute.

Once the range has been traversed, control goes to the first statement following the
for end tag.

Syntax

<jml:for id = "loopVariable"
 from = "<%= jspExpression %>"
 to = "<%= jspExpression %>" >
 ...body of for tag (executed once at each value of range, inclusive)...
</jml:for>

Attributes

■ id—Names the loop variable, which holds the current value in the range. This
is a java.lang.Integer value and can be used only within the body of the
tag. This attribute is required.

Note: Descending ranges are not supported—the from value
must be less than or equal to the to value.
7-36 JavaServer Pages Developer’s Guide and Reference

JSP Markup Language (JML) Tag Descriptions
■ from—Specifies the start of the range. This is an expression that must evaluate
to a Java int value. This is a required attribute.

■ to—Specifies the end of the range. This is an expression that must evaluate to a
Java int value. This is a required attribute.

Example The following example repeatedly prints "Hello World" in progressively
smaller headings (H1, H2, H3, H4, H5).

<jml:for id="i" from="<%= 1 %>" to="<%= 5 %>" >
 <H<%=i%>>
 Hello World!
 </H<<%=i%>>
</jml:for>

JML foreach Tag
This tag provides the ability to iterate over a homogeneous set of values.

The body of the tag is executed once per element in the set. (If the set is empty, then
the body is not executed.)

The id attribute is a local loop variable containing the value of the current set
element. Its type is specified in the type attribute. (The specified type should match
the type of the set elements, as applicable.)

This tag currently supports iterations over the following types of data structures:

■ Java array

■ java.util.Enumeration

■ java.util.Vector

Syntax

<jml:foreach id = "loopVariable"
 in = "<%= jspExpression %>"
 limit = "<%= jspExpression %>"
 type = "package.class" >
 ...body of foreach tag (executes once for each element in data structure)...
</jml:foreach>
 JSP Tag Libraries and the Oracle JML Tags 7-37

JSP Markup Language (JML) Tag Descriptions
Attributes

■ id—Names the loop variable, which holds the value of the current element at
each step of the iteration. It can be used only within the body of the tag. Its type
is the same as specified in the type attribute. The id attribute is required.

■ in—Specifies a JSP expression that evaluates to a Java array, Enumeration
object, or Vector object. This is a required attribute.

■ limit—Specifies a JSP expression that evaluates to a Java int value defining
the maximum number of iterations, regardless of the number of elements in the
set. This is a required attribute.

■ type—Specifies the type of the loop variable. This should match the type of the
set elements, as applicable. This is a required attribute.

Example The following example iterates over the request parameters.

<jml:foreach id="name" in="<%= request.getParameterNames() %>" type="java.lang.String" >
 Parameter: <%= name %>
 Value: <%= request.getParameter(name) %>

</jml:foreach>

Or, if you want to handle parameters with multiple values:

<jml:foreach id="name" in="<%= request.getParameterNames() %>" type="java.lang.String" >
 Parameter: <%= name %>
 Value: <jml:foreach id="val" in="<%=request.getParameterValues(name)%>"
 type="java.lang.String" >
 <%= val %> :
 </jml:foreach>

</jml:foreach>

JML return Tag
When this tag is reached, execution returns from the page without further
processing.

Syntax

<jml:return />

Attributes

None.
7-38 JavaServer Pages Developer’s Guide and Reference

JSP Markup Language (JML) Tag Descriptions
Example The following example returns without processing the page if the timer has
expired.

<jml:if condition="<%= timer.isExpired() %>" >
 You did not complete in time!
 <jml:return />
</jml:if>

JML flush Tag
This tag writes the current contents of the page buffer back to the client. This
applies only if the page is buffered; otherwise, there is no effect.

Syntax

<jml:flush />

Attributes

None.

Example The following example flushes the current page contents before performing
an expensive operation.

<jml:flush />
<% myBean.expensiveOperation(out); %>
 JSP Tag Libraries and the Oracle JML Tags 7-39

JSP Markup Language (JML) Tag Descriptions
7-40 JavaServer Pages Developer’s Guide and Reference

 OracleJSP Globalization Su
8

OracleJSP Globalization Support

OracleJSP provides standard globalization support (also known as National
Language Support, or NLS) according to the Sun Microsystems JavaServer Pages
Specification, Version 1.1, and also offers extended support for servlet environments
that do not support multibyte parameter encoding.

Standard Java support for localized content depends on the use of Unicode 2.0 for
uniform internal representation of text. Unicode is used as the base character set for
conversion to alternative character sets.

This chapter describes key aspects of how OracleJSP supports Oracle Globalization
Support. The following topics are covered:

■ Content Type Settings in the page Directive

■ Dynamic Content Type Settings

■ OracleJSP Extended Support for Multibyte Parameter Encoding

Note: For detailed information about Oracle Globalization
Support, see the Oracle9i Globalization Support Guide.
pport 8-1

Content Type Settings in the page Directive
Content Type Settings in the page Directive
You can use the page directive contentType parameter to set the MIME type and
to optionally set the character encoding for a JSP page. The MIME type applies to
the HTTP response at runtime. The character encoding, if set, applies to both the
page text during translation and the HTTP response at runtime.

Use the following syntax for the page directive:

<%@ page ... contentType="TYPE; charset=character_set" ... %>

or, to set the MIME type while using the default character set:

<%@ page ... contentType="TYPE" ... %>

TYPE is an IANA (Internet Assigned Numbers Authority) MIME type;
character_set is an IANA character set. (When specifying a character set, the
space after the semi-colon is optional.)

For example:

<%@ page language="java" contentType="text/html; charset=UTF-8" %>

or:

<%@ page language="java" contentType="text/html" %>

The default MIME type is text/html. The IANA maintains a registry of MIME
types at the following site:

ftp://www.isi.edu/in-notes/iana/assignments/media-types/media-types

The default character encoding is ISO-8859-1 (also known as Latin-1). The IANA
maintains a registry of character encodings at the following site (use the indicated
"preferred MIME name" if one is listed):

ftp://www.isi.edu/in-notes/iana/assignments/character-sets

(There is no JSP requirement to use an IANA character set as long as you use a
character set that Java and the Web browser support, but the IANA site lists the
most common character sets. Using the preferred MIME names they document is
recommended.)
8-2 JavaServer Pages Developer’s Guide and Reference

Content Type Settings in the page Directive
The parameters of a page directive are static. If a page discovers during execution
that a different setting is necessary for the response, it can do one of the following:

■ Use the servlet response object API to set the content type during execution, as
described in "Dynamic Content Type Settings" on page 8-4.

■ Forward the request to another JSP page or to a servlet.

Notes:

■ The page directive that sets contentType should appear as
early as possible in the JSP page.

■ A JSP page written in a character set other than ISO-8859-1
must set the appropriate character set in a page directive. It
cannot be set dynamically because the page has to be aware of
the setting during translation. Dynamic settings are for runtime
only.

■ The JSP 1.1 specification assumes that a JSP page is written in
the same character set that it will use to deliver its content.

■ This document, for simplicity, assumes the typical case that the
page text, request parameters, and response parameters all use
the same encoding (although other scenarios are technically
possible). Request parameter encoding is controlled by the
browser, although Netscape browsers and Internet Explorer
follow the setting you specify for the response parameters.
 OracleJSP Globalization Support 8-3

Dynamic Content Type Settings
Dynamic Content Type Settings
For situations where the appropriate content type for the HTTP response is not
known until runtime, you can set it dynamically in the JSP page. The standard
javax.servlet.ServletResponse interface specifies the following method for
this purpose:

public void setContentType(java.lang.String contenttype)

(The implicit response object of a JSP page is a
javax.servlet.http.HttpServletResponse instance, where the
HttpServletResponse interface extends the ServletResponse interface.)

The setContentType() method input, like the contentType setting in a page
directive, can include a MIME type only, or both a character set and a MIME type.
For example:

response.setContentType("text/html; charset=UTF-8");

or:

response.setContentType("text/html");

As with a page directive, the default MIME type is text/html and the default
character encoding is ISO-8859-1.

This method has no effect on interpreting the text of the JSP page during translation.
If a particular character set is required during translation, that must be specified in a
page directive, as described in "Content Type Settings in the page Directive" on
page 8-2.

Be aware of the following important usage notes:

■ The JSP page cannot be unbuffered if you are using the setContentType()
method. It is buffered by default; do not set buffer="none" in a page
directive.

■ The setContentType() call must appear early in the page, before any output
to the browser or any jsp:include command (which flushes the JSP buffer to
the browser).

■ In servlet 2.2 environments, the response object has a setLocale() method
that sets a default character set based on the specified locale, overriding any
previous character set. For example, the following method call results in a
character set of Shift_JIS:

response.setLocale(new Locale("ja", "JP"));
8-4 JavaServer Pages Developer’s Guide and Reference

OracleJSP Extended Support for Multibyte Parameter Encoding
OracleJSP Extended Support for Multibyte Parameter Encoding
Character encoding of request parameters is not well defined in the HTTP
specification. Most servlet containers must interpret them using the servlet default
encoding, ISO-8859-1.

For such environments, where the servlet container cannot encode multibyte
request parameters and bean property settings, OracleJSP offers extended support
in two ways:

■ through the setReqCharacterEncoding() method

or:

■ through the translate_params configuration parameter

The setReqCharacterEncoding() Method
OracleJSP provides a setReqCharacterEncoding() method that is useful in
case the default encoding for the servlet container is not appropriate. Use this
method to specify the encoding of multibyte request parameters and bean property
settings, such as for a getParameter() call in Java code or a jsp:setProperty
statement to set a bean property in JSP code. If the default encoding is already
appropriate, then it is not necessary to use this method, and in fact using it may
create some performance overhead in your application.

The setReqCharacterEncoding() method is a static method in the
PublicUtil class of the oracle.jsp.util package.

This method affects parameter names and values, specifically:

■ request object getParameter() method output

■ request object getParameterValues() method output

■ request object getParameterNames() method output

■ jsp:setProperty settings for bean property values

When invoking the method, input a request object and a string that specifies the
desired encoding, as follows:

oracle.jsp.util.PublicUtil.setReqCharacterEncoding(myrequest, "EUC-JP");
 OracleJSP Globalization Support 8-5

OracleJSP Extended Support for Multibyte Parameter Encoding
The translate_params Configuration Parameter
This section describes how to use the OracleJSP translate_params configuration
parameter for encoding of multibyte request parameters and bean property settings,
such as for a getParameter() call in Java code or for a jsp:setProperty
statement to set a bean property in JSP code.

Note that beginning with OracleJSP release 1.1.2.x, it is preferable to use the
PublicUtil.setReqCharacterEncoding() method instead. See "The
setReqCharacterEncoding() Method" above.

Also note that you should not enable translate_params in any of the following
circumstances:

■ When the servlet container properly handles multibyte parameter encoding
itself. Setting translate_params to true in this situation will cause incorrect
results. As of this writing, however, it is known that Apache/JServ, JSWDK, and
Tomcat all do not properly handle multibyte parameter encoding.

■ When the request parameters use a different encoding from what is specified
for the response in the JSP page directive or setContentType() method.

■ When code with workaround functionality equivalent to what
translate_params accomplishes is already present in the JSP page. (See
"Code Equivalent to the translate_params Configuration Parameter" on
page 8-7.)

Effect of translate_params in Overriding Non-Multibyte Servlet Containers
Setting translate_params to true overrides servlet containers that cannot
encode multibyte request parameters and bean property settings. (For information

Notes:

■ Beginning with OracleJSP release 1.1.2.x, using the
setReqCharacterEncoding() method is preferable to using
the translate_params configuration parameter described in
"The translate_params Configuration Parameter" on page 8-6.

■ The setReqCharacterEncoding() method is
forward-compatible with the method
request.setCharacterEncoding(encoding) of the
upcoming servlet 2.3 API.
8-6 JavaServer Pages Developer’s Guide and Reference

OracleJSP Extended Support for Multibyte Parameter Encoding
about how to set OracleJSP configuration parameters, see "OracleJSP Configuration
Parameter Settings" on page A-26.)

When this flag is enabled, OracleJSP encodes the request parameters and bean
property settings based on the character set of the response object, as indicated by
the response.getCharacterEncoding() method.

The translate_params flag affects parameter names and values, specifically:

■ request object getParameter() method output

■ request object getParameterValues() method output

■ request object getParameterNames() method output

■ jsp:setProperty settings for bean property values

Code Equivalent to the translate_params Configuration Parameter
The translate_params configuration parameter, being a runtime parameter,
cannot be set in the Oracle9i Servlet Engine environment. (Translation-time
configuration can be set for the OSE environment through ojspc command-line
options. There is no equivalent for runtime parameters.)

For this reason, and possibly other reasons as well, it is useful to be aware of
equivalent functionality that can be implemented through scriptlet code in the JSP
page, for example:

<%@ page contentType="text/html; charset=EUC-JP" %>
...
String paramName="XXYYZZ"; // where XXYYZZ is a multibyte string
paramName =
 new String(paramName.getBytes(response.getCharacterEncoding()), "ISO8859_1");
String paramValue = request.getParameter(paramName);
paramValue= new String(paramValue.getBytes("ISO8859_1"), "EUC-JP");
...

This code accomplishes the following:

■ Sets XXYYZZ as the parameter name to search for. (Presume XX, YY, and ZZ are
three Japanese characters.)

■ Encodes the parameter name to ISO-8859-1, the servlet container character
set, so that the servlet container can interpret it. (First a byte array is created for
the parameter name, using the character encoding of the request object.)
 OracleJSP Globalization Support 8-7

OracleJSP Extended Support for Multibyte Parameter Encoding
■ Gets the parameter value from the request object by looking for a match for the
parameter name. (It is able to find a match because parameter names in the
request object are also in ISO-8859-1 encoding.)

■ Encodes the parameter value to EUC-JP for further processing or output to the
browser.

See the next two sections for a globalization sample that depends on
translate_params being enabled, and one that contains the equivalent code so
that it does not depend on the translate_params setting.

Globalization Sample Depending on translate_params
The following sample accepts a user name in Japanese characters and correctly
outputs the name back to the browser. In a servlet environment that cannot encode
multibyte request parameters, this sample depends on the OracleJSP configuration
setting of translate_params=true.

Presume XXYY is the parameter name (something equivalent to "user name" in
Japanese) and AABB is the default value (also in Japanese).

(See the next section for a sample that has the code equivalent of the
translate_params functionality, so does not depend on the
translate_params setting.)

<%@ page contentType="text/html; charset=EUC-JP" %>
<HTML>
<HEAD>
<TITLE>Hello</TITLE></HEAD>
<BODY>
<%
 //charset is as specified in page directive (EUC-JP)
 String charset = response.getCharacterEncoding();
%>

 encoding = <%= charset %>

<%
String paramValue = request.getParameter("XXYY");

if (paramValue == null || paramValue.length() == 0) { %>
 <FORM METHOD="GET">
 Please input your name: <INPUT TYPE="TEXT" NAME="XXYY" value="AABB" size=20>

 <INPUT TYPE="SUBMIT">
 </FORM>
<% }
else
8-8 JavaServer Pages Developer’s Guide and Reference

OracleJSP Extended Support for Multibyte Parameter Encoding
{ %>
 <H1> Hello, <%= paramValue %> </H1>
<% } %>
</BODY>
</HTML>

Following is the sample input:

and the sample output:
 OracleJSP Globalization Support 8-9

OracleJSP Extended Support for Multibyte Parameter Encoding
Globalization Sample Not Depending on translate_params
The following sample, as with the preceding sample, accepts a user name in
Japanese characters and correctly outputs the name back to the browser. This
sample, however, has the code equivalent of translate_params functionality, so
does not depend on the translate_params setting.

Presume XXYY is the parameter name (something equivalent to "user name" in
Japanese) and AABB is the default value (also in Japanese).

For an explanation of the critical code in this sample, see "Code Equivalent to the
translate_params Configuration Parameter" on page 8-7.

<%@ page contentType="text/html; charset=EUC-JP" %>

<HTML>
<HEAD>
<TITLE>Hello</TITLE></HEAD>
<BODY>
<%
 //charset is as specified in page directive (EUC-JP)
 String charset = response.getCharacterEncoding();
%>

 encoding = <%= charset %>

<%
String paramName = "XXYY";

paramName = new String(paramName.getBytes(charset), "ISO8859_1");

String paramValue = request.getParameter(paramName);

if (paramValue == null || paramValue.length() == 0) { %>
 <FORM METHOD="GET">
 Please input your name: <INPUT TYPE="TEXT" NAME="XXYY" value="AABB" size=20>

 <INPUT TYPE="SUBMIT">
 </FORM>
<% }
else

Important: If you use translate_params-equivalent code, do
not also enable the translate_params flag. This would cause
incorrect results. (This is not a concern in the OSE environment,
where the translate_params flag is not supported.)
8-10 JavaServer Pages Developer’s Guide and Reference

OracleJSP Extended Support for Multibyte Parameter Encoding
{
 paramValue= new String(paramValue.getBytes("ISO8859_1"), "EUC-JP"); %>
 <H1> Hello, <%= paramValue %> </H1>
<% } %>
</BODY>
</HTML>
 OracleJSP Globalization Support 8-11

OracleJSP Extended Support for Multibyte Parameter Encoding
8-12 JavaServer Pages Developer’s Guide and Reference

 Sample Applica
9

Sample Applications

This chapter provides a variety of code samples for JSP pages and the JavaBeans
that they use (as applicable), in the following categories:

■ Basic Samples

■ JDBC Samples

■ Data-Access JavaBean Samples

■ Custom Tag Samples

■ Samples for Oracle-Specific Programming Extensions

■ Samples Using globals.jsa for Servlet 2.0 Environments
tions 9-1

Basic Samples
Basic Samples
This section provides JSP samples that are fairly basic but also exemplify use of the
Oracle JML datatypes. This includes an elementary "hello" sample, a sample of
using a JavaBean, and a more intermediate shopping cart example. The following
samples are provided:

■ Hello Page—hellouser.jsp

■ Usebean Page—usebean.jsp

■ Shopping Cart Page—cart.jsp

These examples could use standard datatypes instead, but JML datatypes offer a
number of advantages, as described in "JML Extended Datatypes" on page 5-2. JML
datatypes are also portable to other JSP environments.

This section concludes with a sample that shows how to obtain environmental
information, including the version number of your OracleJSP installation:

■ Information Page—info.jsp

Hello Page—hellouser.jsp
This sample is an elementary JSP "hello" page. Users are presented with a form to
enter their name. After they submit the name, the JSP page redisplays the form with
the name at the top.

<%---
 Copyright (c) 1999, Oracle Corporation. All rights reserved.
--%>

<%@page session="false" %>

<jsp:useBean id="name" class="oracle.jsp.jml.JmlString" scope="request" >
 <jsp:setProperty name="name" property="value" param="newName" />
</jsp:useBean>

<HTML>
<HEAD>
<TITLE>
Hello User
</TITLE>
</HEAD>

<BODY>
9-2 JavaServer Pages Developer’s Guide and Reference

Basic Samples
<% if (!name.isEmpty()) { %>
<H3>Welcome <%= name.getValue() %></H3>
<% } %>

<P>
Enter your Name:
<FORM METHOD=get>
<INPUT TYPE=TEXT name=newName size = 20>

<INPUT TYPE=SUBMIT VALUE="Submit name">
</FORM>

</BODY>
</HTML>

Usebean Page—usebean.jsp
This page uses a simple JavaBean, NameBean, to illustrate usage of the
jsp:useBean tag. Code for both the bean and the page is provided.

Code for usebean.jsp
<%---
 Copyright (c) 1999, Oracle Corporation. All rights reserved.
--%>

<%@ page import="beans.NameBean" %>

<jsp:useBean id="pageBean" class="beans.NameBean" scope="page" />
<jsp:setProperty name="pageBean" property="*" />

<jsp:useBean id="sessionBean" class="beans.NameBean" scope="session" />
<jsp:setProperty name="sessionBean" property="*" />

<HTML>
<HEAD> <TITLE> The UseBean JSP </TITLE> </HEAD>
<BODY BGCOLOR=white>

<H3> Welcome to the UseBean JSP </H3>
<P>Page bean:
<% if (pageBean.getNewName().equals("")) { %>
 I don’t know you.
<% } else { %>
 Hello <%= pageBean.getNewName() %> !
<% } %>
 Sample Applications 9-3

Basic Samples

<P>Session bean:
<% if (sessionBean.getNewName().equals("")) { %>
 I don’t know you either.
<% } else {
 if ((request.getParameter("newName") == null) ||
 (request.getParameter("newName").equals(""))) { %>
 Aha, I remember you.
<% } %>
 You are <%= sessionBean.getNewName() %>.
<% } %>

<P>May we have your name?
<FORM METHOD=get>
<INPUT TYPE=TEXT name=newName size = 20>
<INPUT TYPE=SUBMIT VALUE="Submit name">
</FORM>
</BODY>
</HTML>

Code for NameBean.java
package beans;

public class NameBean {

 String newName="";

 public void NameBean() { }

 public String getNewName() {
 return newName;
 }
 public void setNewName(String newName) {
 this.newName = newName;
 }
}
9-4 JavaServer Pages Developer’s Guide and Reference

Basic Samples
Shopping Cart Page—cart.jsp
This sample shows how to use session state to maintain a shopping cart. The user
chooses a T-shirt or sweatshirt to order and the order is then redisplayed. If
shopping continues and the order is changed, the page redisplays the order, striking
out the previous choices as appropriate.

The cart.jsp file is the primary source file; it references index.jsp. Code for
both pages is provided.

Code for cart.jsp
<%---
 Copyright (c) 1999-2000, Oracle Corporation. All rights reserved.
--%>
<jsp:useBean id="currSS" scope ="session" class="oracle.jsp.jml.JmlString" />
<jsp:useBean id="currTS" scope ="session" class="oracle.jsp.jml.JmlString" />

<HTML>

<HEAD>
 <TITLE>Java Store</TITLE>
</HEAD>

<BODY BACKGROUND=images/bg.gif BGCOLOR=#FFFFFF>

<jsp:useBean id="sweatShirtSize" scope="page" class="oracle.jsp.jml.JmlString" >
 <jsp:setProperty name="sweatShirtSize" property="value" param="SS" />
</jsp:useBean>
<jsp:useBean id="tshirtSize" scope="page" class="oracle.jsp.jml.JmlString" >
 <jsp:setProperty name="tshirtSize" property="value" param="TS" />
</jsp:useBean>

<jsp:useBean id="orderedSweatshirt" scope="page"
class="oracle.jsp.jml.JmlBoolean" >
 <jsp:setProperty name="orderedSweatshirt" property="value"
 value= ’<%= !(sweatShirtSize.isEmpty() ||
sweatShirtSize.getValue().equals("none")) %>’ />
</jsp:useBean>

<jsp:useBean id="orderedTShirt" scope="page" class="oracle.jsp.jml.JmlBoolean" >
 <jsp:setProperty name="orderedTShirt" property="value"
 value=’<%= !(tshirtSize.isEmpty() || tshirtSize.getValue().equals("none"))
%>’ />
</jsp:useBean>
 Sample Applications 9-5

Basic Samples
<P>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0 WIDTH=100% HEIGHT=553>
 <TR>
 <TD WIDTH=33% HEIGHT=61> </TD>
 <TD WIDTH=67% HEIGHT=61> </TD>
 </TR>
 <TR>
 <TD WIDTH=33% HEIGHT=246> </TD>
 <TD WIDTH=67% HEIGHT=246 VALIGN=TOP BGCOLOR=#FFFFFF>

 <% if (orderedSweatshirt.getValue() || orderedTShirt.getValue()) { %>
 Thank you for selecting our fine JSP Wearables!<P>

 <% if (!currSS.isEmpty() || !currTS.isEmpty()) { %>
 You have changed your order:

 <% if (orderedSweatshirt.getValue()) { %>
 1 Sweatshirt
 <% if (!currSS.isEmpty()) { %>
 <S>(size: <%= currSS.getValue().toUpperCase() %>)</S>
 <% } %>
 (size: <%= sweatShirtSize.getValue().toUpperCase() %>)
 <% } else if (!currSS.isEmpty()) { %>
 <S>1 Sweatshirt (size: <%= currSS.getValue().toUpperCase()
 %>)</S>
 <% } %>

 <% if (orderedTShirt.getValue()) { %>
 1 Tshirt
 <% if (!currTS.isEmpty()) { %>
 <S>(size: <%= currTS.getValue().toUpperCase() %>)</S>
 <% } %>
 (size: <%= tshirtSize.getValue().toUpperCase() %>)
 <% } else if (!currTS.isEmpty()) { %>
 <S>1 Tshirt (size: <%= currTS.getValue().toUpperCase()
 %>)</S>
 <% } %>

 <% } else { %>
 You have selected:

 <% if (orderedSweatshirt.getValue()) { %>
 1 Sweatshirt (size: <%= sweatShirtSize.getValue().toUpperCase()
 %>)
9-6 JavaServer Pages Developer’s Guide and Reference

Basic Samples
 <% } %>

 <% if (orderedTShirt.getValue()) { %>
 1 Tshirt (size: <%= tshirtSize.getValue().toUpperCase() %>)
 <% } %>

 <% } %>
 <% } else { %>
 Are you sure we can’t interest you in something?
 <% } %>

 <CENTER>
 <FORM ACTION="index.jsp" METHOD="GET"
 ENCTYPE="application/x-www-form-urlencoded">
 <INPUT TYPE="IMAGE" SRC="images/shop_again.gif" WIDTH="91" HEIGHT="30"
 BORDER="0">
 </FORM>
 </CENTER>
 </TD></TR>
</TABLE>

</BODY>

</HTML>

<%
if (orderedSweatshirt.getValue()) {
 currSS.setValue(sweatShirtSize.getValue());
} else {
 currSS.setValue("");
}

if (orderedTShirt.getValue()) {
 currTS.setValue(tshirtSize.getValue());
} else {
 currTS.setValue("");
}
%>
 Sample Applications 9-7

Basic Samples
Code for index.jsp
<%---
 Copyright (c) 1999-2000, Oracle Corporation. All rights reserved.
--%>
<jsp:useBean id="currSS" scope ="session" class="oracle.jsp.jml.JmlString" />
<jsp:useBean id="currTS" scope ="session" class="oracle.jsp.jml.JmlString" />

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>

<HEAD>
 <TITLE>untitled</TITLE>
</HEAD>

<BODY BACKGROUND="images/bg.gif" BGCOLOR="#FFFFFF">

<FORM ACTION="cart.jsp" METHOD="POST"
ENCTYPE="application/x-www-form-urlencoded">
<P>
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0" WIDTH="100%" HEIGHT="553">
 <TR>
 <TD WIDTH="33%" HEIGHT="61"> </TD>
 <TD WIDTH="67%" HEIGHT="61"> </TD>
 </TR>
 <TR>
 <TD WIDTH="33%" HEIGHT="246"> </TD>
 <TD WIDTH="67%" HEIGHT="246" VALIGN="TOP" BGCOLOR="#FFFFFF">
 <TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0" WIDTH="81%">
 <TR>
 <TD WIDTH="100%" BGCOLOR="#CCFFFF">
 <H4>JSP Wearables
 </TD>
 </TR>
 <TR>
 <TD WIDTH="100%" BGCOLOR="#FFFFFF">

 <BLOCKQUOTE>
 Sweatshirt
 <SPACER TYPE="HORIZONTAL" SIZE="10">($24.95)

 <SPACER TYPE="HORIZONTAL" SIZE="30">
 <INPUT TYPE="RADIO" NAME="SS" VALUE="xl"
 <%= currSS.getValue().equals("xl") ? "CHECKED" : "" %> >XL
 <SPACER TYPE="HORIZONTAL" SIZE="10">
 <INPUT TYPE="RADIO" NAME="SS" VALUE="l" <%= currSS.getValue().equals("l")
 ? "CHECKED" : "" %> >L
9-8 JavaServer Pages Developer’s Guide and Reference

Basic Samples
 <SPACER TYPE="HORIZONTAL" SIZE="10">
 <INPUT TYPE="RADIO" NAME="SS" VALUE="m" <%= currSS.getValue().equals("m")
 ? "CHECKED" : "" %> >M
 <SPACER TYPE="HORIZONTAL" SIZE="10">
 <INPUT TYPE="RADIO" NAME="SS" VALUE="s" <%= currSS.getValue().equals("s")
 ? "CHECKED" : "" %> >S
 <SPACER TYPE="HORIZONTAL" SIZE="10">
 <INPUT TYPE="RADIO" NAME="SS" VALUE="xs"
 <%= currSS.getValue().equals("xs") ? "CHECKED" : "" %> >XS
 <SPACER TYPE="HORIZONTAL" SIZE="10">
 <INPUT TYPE="RADIO" NAME="SS" VALUE="none"
 <%= currSS.getValue().equals("none") || currSS.isEmpty() ?
 "CHECKED" : "" %> >NONE

 T-Shirt<SPACER TYPE="HORIZONTAL" SIZE="10"> (14.95)

 <SPACER TYPE="HORIZONTAL" SIZE="30">
 <INPUT TYPE="RADIO" NAME="TS" VALUE="xl"
 <%= currTS.getValue().equals("xl") ? "CHECKED" : "" %> >XL
 <SPACER TYPE="HORIZONTAL" SIZE="10">
 <INPUT TYPE="RADIO" NAME="TS" VALUE="l" <%= currTS.getValue().equals("l")
 ? "CHECKED" : "" %> >L
 <SPACER TYPE="HORIZONTAL" SIZE="10">
 <INPUT TYPE="RADIO" NAME="TS" VALUE="m" <%= currTS.getValue().equals("m")
 ? "CHECKED" : "" %> >M
 <SPACER TYPE="HORIZONTAL" SIZE="10">
 <INPUT TYPE="RADIO" NAME="TS" VALUE="s" <%= currTS.getValue().equals("s")
 ? "CHECKED" : "" %> >S
 <SPACER TYPE="HORIZONTAL" SIZE="10">
 <INPUT TYPE="RADIO" NAME="TS" VALUE="xs"
 <%= currTS.getValue().equals("xs") ? "CHECKED" : "" %> >XS
 <SPACER TYPE="HORIZONTAL" SIZE="10">
 <INPUT TYPE="RADIO" NAME="TS" VALUE="none"
 <%= currTS.getValue().equals("none") || currTS.isEmpty() ?
 "CHECKED" : "" %> >NONE
 </BLOCKQUOTE>
 </TD>
 </TR>
 <TR>
 <TD WIDTH="100%">
 <DIV ALIGN="RIGHT">
 <P><INPUT TYPE="IMAGE" SRC="images/addtobkt.gif" WIDTH="103" HEIGHT="22"
 ALIGN="BOTTOM" BORDER="0">
 </DIV>
 </TD>
 Sample Applications 9-9

Basic Samples
 </TR>
 </TABLE>
 </TD>
 </TR>
</TABLE>

</FORM>

</BODY>

</HTML>

Information Page—info.jsp
This sample retrieves and displays the following information:

■ OracleJSP version number

■ Java classpath

■ OracleJSP build date

■ OracleJSP configuration parameter settings

<HTML>
 <HEAD>
 <TITLE>OJSP Information </TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
 OJSP Version:
<%=
 application.getAttribute("oracle.jsp.versionNumber") %>

 ClassPath:
<%=System.getProperty("java.class.path") %>

 OJSP BuildDate:

 <%
 try {
 %>
 <%=((oracle.jsp.runtime.OraclePageContext)pageContext).BUILD_DATE%>
 <%
 }catch(Exception e){
 }
 %>

 OJSP Init Parameters:

9-10 JavaServer Pages Developer’s Guide and Reference

Basic Samples
 <%
 for (Enumeration paraNames = config.getInitParameterNames();
 paraNames.hasMoreElements() ;) {
 String paraName = (String)paraNames.nextElement();
 %>
 <%=paraName%> = <%=config.getInitParameter(paraName)%>

 <%
 }
 %>
 </BODY>
</HTML>
 Sample Applications 9-11

JDBC Samples
JDBC Samples
Examples in this section use JDBC to query a database or the middle-tier database
cache. For the most part they use standard JDBC functionality, although the
connection caching examples use Oracle’s particular connection caching
implementation. The following examples are provided:

■ Simple Query—SimpleQuery.jsp

■ User-Specified Query—JDBCQuery.jsp

■ Query Using a Query Bean—UseHtmlQueryBean.jsp

■ Connection Caching—ConnCache3.jsp and ConnCache1.jsp

See the Oracle9i JDBC Developer’s Guide and Reference for information about Oracle
JDBC in general and the Oracle JDBC connection caching implementation in
particular.

Simple Query—SimpleQuery.jsp
This page executes a simple query of the scott.emp table, listing employees and
their salaries in an HTML table (ordered by employee name).

<%@ page import="java.sql.*" %>

<!--
 * This is a basic JavaServer Page that does a JDBC query on the
 * emp table in schema scott and outputs the result in an html table.
 *
--!>
<HTML>
 <HEAD>
 <TITLE>
 SimpleQuery JSP
 </TITLE>
 </HEAD>
 <BODY BGCOLOR=EOFFFO>
 <H1> Hello
 <%= (request.getRemoteUser() != null? ", " + request.getRemoteUser() : "") %>
 ! I am SimpleQuery JSP.
 </H1>
 <HR>
 I will do a basic JDBC query to get employee data
 from EMP table in schema SCOTT..

9-12 JavaServer Pages Developer’s Guide and Reference

JDBC Samples
 <P>
<%
 try {
 // Use the following 2 files when running inside Oracle 9i
 // Connection conn = new oracle.jdbc.driver.OracleDriver().
 // defaultConnection ();
 Connection conn =
 DriverManager.getConnection((String)session.getValue("connStr"),
 "scott", "tiger");
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("SELECT ename, sal " +
 "FROM scott.emp ORDER BY ename");
 if (rset.next()) {
%>
 <TABLE BORDER=1 BGCOLOR="C0C0C0">
 <TH WIDTH=200 BGCOLOR="white"> <I>Employee Name</I> </TH>
 <TH WIDTH=100 BGCOLOR="white"> <I>Salary</I> </TH>
 <TR> <TD ALIGN=CENTER> <%= rset.getString(1) %> </TD>
 <TD ALIGN=CENTER> $<%= rset.getDouble(2) %> </TD>
 </TR>
<% while (rset.next()) {
%>
 <TR> <TD ALIGN=CENTER> <%= rset.getString(1) %> </TD>
 <TD ALIGN=CENTER> $<%= rset.getDouble(2) %> </TD>
 </TR>
<% }
%>
 </TABLE>
<% }
 else {
%>
 <P> Sorry, the query returned no rows! </P>
<%
 }
 rset.close();
 stmt.close();
 } catch (SQLException e) {
 out.println("<P>" + "There was an error doing the query:");
 out.println ("<PRE>" + e + "</PRE> \n <P>");
 }
%>
 </BODY>
</HTML>
 Sample Applications 9-13

JDBC Samples
User-Specified Query—JDBCQuery.jsp
This page queries the scott.emp table according to a user-specified condition and
outputs the results.

<%@ page import="java.sql.*" %>

<HTML>
<HEAD> <TITLE> The JDBCQuery JSP </TITLE> </HEAD>
<BODY BGCOLOR=white>

<% String searchCondition = request.getParameter("cond");
 if (searchCondition != null) { %>
 <H3> Search results for : <I> <%= searchCondition %> </I> </H3>
 <%= runQuery(searchCondition) %>
 <HR>

<% } %>

Enter a search condition:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="cond" SIZE=30>
<INPUT TYPE="submit" VALUE="Ask Oracle");
</FORM>
</BODY>
</HTML>
<%!
 private String runQuery(String cond) throws SQLException {
 Connection conn = null;
 Statement stmt = null;
 ResultSet rset = null;
 try {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 conn = DriverManager.getConnection((String)session.getValue("connStr"),
 "scott", "tiger");
 stmt = conn.createStatement();
 rset = stmt.executeQuery ("SELECT ename, sal FROM scott.emp "+
 (cond.equals("") ? "" : "WHERE " + cond));
 return (formatResult(rset));
 } catch (SQLException e) {
 return ("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
 } finally {
 if (rset!= null) rset.close();
 if (stmt!= null) stmt.close();
 if (conn!= null) conn.close();
 }
 }
9-14 JavaServer Pages Developer’s Guide and Reference

JDBC Samples
 private String formatResult(ResultSet rset) throws SQLException {
 StringBuffer sb = new StringBuffer();
 if (!rset.next())
 sb.append("<P> No matching rows.<P>\n");
 else { sb.append("");
 do { sb.append("" + rset.getString(1) +
 " earns $ " + rset.getInt(2) + ".\n");
 } while (rset.next());
 sb.append("");
 }
 return sb.toString();
 }
%>

Query Using a Query Bean—UseHtmlQueryBean.jsp
This page uses a JavaBean, HtmlQueryBean, to query the scott.emp table
according to a user-specified condition. HtmlQueryBean, in turn, uses the class
HtmlTable to format the output into an HTML table. This sample includes code
for the JSP page, HtmlQueryBean, and HtmlTable.

Code for UseHtmlQueryBean.jsp
<jsp:useBean id="htmlQueryBean" class="beans.HtmlQueryBean" scope="session" />
<jsp:setProperty name="htmlQueryBean" property="searchCondition" />

<HTML>
<HEAD> <TITLE> The UseHtmlQueryBean JSP </TITLE> </HEAD>
<BODY BGCOLOR="white">
<% String searchCondition = request.getParameter("searchCondition");
 if (searchCondition != null) { %>
 <H3>Search Results for : <I> <%= searchCondition %> </I> </H3>
 <%= htmlQueryBean.getResult() %>

 <HR>
<% } %>
<P>Enter a search condition:</P>
<FORM METHOD=get>
<INPUT TYPE=text NAME="searchCondition" SIZE=30>
<INPUT TYPE=submit VALUE="Ask Oracle">
</FORM>
</BODY>
</HTML>
 Sample Applications 9-15

JDBC Samples
Code for HtmlQueryBean.java
package beans;

import java.sql.*;

public class HtmlQueryBean {

 private String searchCondition = "";
 private String connStr = null;

 public String getResult() throws SQLException {
 return runQuery();
 }

 public void setSearchCondition(String searchCondition) {
 this.searchCondition = searchCondition;
 }

 public void setConnStr(String connStr) {
 this.connStr = connStr;
 }

 private String runQuery() {
 Connection conn = null;
 Statement stmt = null;
 ResultSet rset = null;
 try {
 if (conn == null) {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 conn = DriverManager.getConnection(connStr,
 "scott","tiger");
 }
 stmt = conn.createStatement();
 rset = stmt.executeQuery ("SELECT ename as \"Name\", " +
 "empno as \"Employee Id\","+
 "sal as \"Salary\"," +
 "TO_CHAR(hiredate, ’DD-MON-YYYY’) as \"Date Hired\"" +
 "FROM scott.emp " + (searchCondition.equals("") ? "" :
 "WHERE " + searchCondition));
 return format(rset);;
 } catch (SQLException e) {
 return ("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
 }
 finally {
9-16 JavaServer Pages Developer’s Guide and Reference

JDBC Samples
 try {
 if (rset!= null) rset.close();
 if (stmt!= null) stmt.close();
 if (conn!= null) conn.close();
 } catch (SQLException ignored) {}
 }
 }

 public static String format(ResultSet rs) throws SQLException {
 StringBuffer sb = new StringBuffer();
 if (rs == null || !rs.next())
 sb.append("<P> No matching rows.<P>\n");
 else {
 sb.append("<TABLE BORDER>\n");
 ResultSetMetaData md = rs.getMetaData();
 int numCols = md.getColumnCount();
 for (int i=1; i<= numCols; i++) {
 sb.append("<TH><I>" + md.getColumnLabel(i) + "</I></TH>");
 }
 do {
 sb.append("<TR>\n");

 for (int i = 1; i <= numCols; i++) {
 sb.append("<TD>");
 Object obj = rs.getObject(i);
 if (obj != null) sb.append(obj.toString());
 sb.append("</TD>");
 }
 sb.append("</TR>");
 } while (rs.next());
 sb.append("</TABLE>");
 }
 return sb.toString();
 }
}

Code for HtmlTable.java
import java.sql.*;

public class HtmlTable {

 public static String format(ResultSet rs) throws SQLException {
 StringBuffer sb = new StringBuffer();
 Sample Applications 9-17

JDBC Samples
 if (rs == null || !rs.next())
 sb.append("<P> No matching rows.<P>\n");
 else {
 sb.append("<TABLE BORDER>\n");
 ResultSetMetaData md = rs.getMetaData();
 int numCols = md.getColumnCount();
 for (int i=1; i<= numCols; i++) {
 sb.append("<TH><I>" + md.getColumnLabel(i) + "</I></TH>");
 }
 do {
 sb.append("<TR>\n");

 for (int i = 1; i <= numCols; i++) {
 sb.append("<TD>");
 Object obj = rs.getObject(i);
 if (obj != null) sb.append(obj.toString());
 sb.append("</TD>");
 }
 sb.append("</TR>");
 } while (rs.next());
 sb.append("</TABLE>");
 }
 return sb.toString();
 }
}

Connection Caching—ConnCache3.jsp and ConnCache1.jsp
This section provides two examples of connection caching using Oracle’s caching
implementation. This implementation uses the Oracle JDBC
OracleConnectionCacheImpl class. For introductory information, see
"Database Connection Caching" on page 4-9. For further information see, the
Oracle9i JDBC Developer’s Guide and Reference.

The first example, ConnCache3.jsp, performs its own cache setup.

The second example, ConnCache1.jsp, uses a separate page, setupcache.jsp,
to do the setup.

Code is provided for all three pages.
9-18 JavaServer Pages Developer’s Guide and Reference

JDBC Samples
Code for ConnCache3.jsp (with cache setup)
This sample page handles its own connection cache setup.

<%@ page import="java.sql.*, javax.sql.*, oracle.jdbc.pool.*" %>

<!--
 * This is a JavaServer Page that uses Connection Caching at Session
 * scope.
--!>

<jsp:useBean id="ods" class="oracle.jdbc.pool.OracleConnectionCacheImpl"
scope="session" />

<HTML>
 <HEAD>
 <TITLE>
 ConnCache 3 JSP
 </TITLE>
 </HEAD>
 <BODY BGCOLOR=EOFFFO>
 <H1> Hello
 <%= (request.getRemoteUser() != null? ", " + request.getRemoteUser() : "") %>
 ! I am Connection Caching JSP.
 </H1>
 <HR>
 Session Level Connection Caching.

 <P>
<%
 try {
 ods.setURL((String)session.getValue("connStr"));
 ods.setUser("scott");
 ods.setPassword("tiger");

 Connection conn = ods.getConnection ();
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("SELECT ename, sal " +
 "FROM scott.emp ORDER BY ename");

Note: As a more convenient alternative, you can use the
ConnCacheBean JavaBean provided with OracleJSP. See "Page
Using ConnCacheBean—ConnCacheBeanDemo.jsp" on page 9-28.
 Sample Applications 9-19

JDBC Samples
 if (rset.next()) {
%>
 <TABLE BORDER=1 BGCOLOR="C0C0C0">
 <TH WIDTH=200 BGCOLOR="white"> <I>Employee Name</I> </TH>
 <TH WIDTH=100 BGCOLOR="white"> <I>Salary</I> </TH>
 <TR> <TD ALIGN=CENTER> <%= rset.getString(1) %> </TD>
 <TD ALIGN=CENTER> $<%= rset.getDouble(2) %> </TD>
 </TR>

<% while (rset.next()) {
%>

 <TR> <TD ALIGN=CENTER> <%= rset.getString(1) %> </TD>
 <TD ALIGN=CENTER> $<%= rset.getDouble(2) %> </TD>
 </TR>

<% }
%>
 </TABLE>
<% }
 else {
%>
 <P> Sorry, the query returned no rows! </P>

<%
 }
 rset.close();
 stmt.close();
 conn.close(); // Put the Connection Back into the Pool

 } catch (SQLException e) {
 out.println("<P>" + "There was an error doing the query:");
 out.println ("<PRE>" + e + "</PRE> \n <P>");
 }
%>

 </BODY>
</HTML>

Code for ConnCache1.jsp and setupcache.jsp
This sample page statically includes another page, setupcache.jsp, for its
connection cache setup. Code is provided for both pages.
9-20 JavaServer Pages Developer’s Guide and Reference

JDBC Samples
ConnCache1.jsp

<%@ include file="setupcache.jsp" %>
<%@ page import="java.sql.*, javax.sql.*, oracle.jdbc.pool.*" %>

<!--
 * This is a JavaServer Page that uses Connection Caching over application
 * scope. The Cache is created in an application scope in setupcache.jsp
 * Connection is obtained from the Cache and recycled back once done.
--!>

<HTML>
 <HEAD>
 <TITLE>
 ConnCache1 JSP
 </TITLE>
 </HEAD>
 <BODY BGCOLOR=EOFFFO>
 <H1> Hello
 <%= (request.getRemoteUser() != null? ", " + request.getRemoteUser() : "") %>
 ! I am Connection Caching JSP.
 </H1>
 <HR>
 I get the Connection from the Cache and recycle it back.

 <P>
<%
 try {
 Connection conn = cods.getConnection();

 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("SELECT ename, sal " +
 "FROM scott.emp ORDER BY ename");
 if (rset.next()) {
%>
 <TABLE BORDER=1 BGCOLOR="C0C0C0">
 <TH WIDTH=200 BGCOLOR="white"> <I>Employee Name</I> </TH>
 <TH WIDTH=100 BGCOLOR="white"> <I>Salary</I> </TH>
 <TR> <TD ALIGN=CENTER> <%= rset.getString(1) %> </TD>
 <TD ALIGN=CENTER> $<%= rset.getDouble(2) %> </TD>
 </TR>

<% while (rset.next()) {
%>
 Sample Applications 9-21

JDBC Samples
 <TR> <TD ALIGN=CENTER> <%= rset.getString(1) %> </TD>
 <TD ALIGN=CENTER> $<%= rset.getDouble(2) %> </TD>
 </TR>

<% }
%>
 </TABLE>
<% }
 else {
%>
 <P> Sorry, the query returned no rows! </P>

<%
 }
 rset.close();
 stmt.close();
 conn.close(); // Put the Connection Back into the Pool
 } catch (SQLException e) {
 out.println("<P>" + "There was an error doing the query:");
 out.println ("<PRE>" + e + "</PRE> \n <P>");
 }
%>

 </BODY>
</HTML>

setupcache.jsp

<jsp:useBean id="cods" class="oracle.jdbc.pool.OracleConnectionCacheImpl"
 scope="application">
<%
 cods.setURL((String)session.getValue("connStr"));
 cods.setUser("scott");
 cods.setPassword("tiger");
 cods.setStmtCache (5);
%>
</jsp:useBean>
9-22 JavaServer Pages Developer’s Guide and Reference

Data-Access JavaBean Samples
Data-Access JavaBean Samples
This section provides examples using the Oracle data-access JavaBeans. These beans
are provided with OracleJSP but are generally portable to other JSP environments.
Note, however, that the connection caching bean relies on the Oracle JDBC
implementation of connection caching.

DBBean is the simplest of these JavaBeans, with its own connection functionality
and supporting queries only. For more complicated operations, use appropriate
combinations of ConnBean (for simple connections), ConnCacheBean (for
connection caching), and CursorBean (for general SQL DML operations).

For more information, see "Oracle Data-Access JavaBeans" on page 5-13.

The following examples are included:

■ Page Using DBBean—DBBeanDemo.jsp

■ Page Using ConnBean—ConnBeanDemo.jsp

■ Page Using CursorBean—CursorBeanDemo.jsp

■ Page Using ConnCacheBean—ConnCacheBeanDemo.jsp

Page Using DBBean—DBBeanDemo.jsp
This page uses a DBBean object to connect to the database or middle-tier database
cache, execute a query, and output the results as an HTML table.

<%@ page import="java.sql.*" %>

<!--
 * This is a basic JavaServer Page that uses a DB Access Bean and queries
 * dept and emp tables in schema scott and outputs the result in an html table.
 *
--!>

<jsp:useBean id="dbbean" class="oracle.jsp.dbutil.DBBean" scope="session">
 <jsp:setProperty name="dbbean" property="User" value="scott"/>
 <jsp:setProperty name="dbbean" property="Password" value="tiger"/>
 <jsp:setProperty name="dbbean" property="URL" value=
 "<%= (String)session.getValue(\"connStr\") %>" />

Note: Oracle also provides custom tags for SQL functionality that
use these JavaBeans behind the scenes. For samples using these
tags, see "SQL Tag Examples" on page 5-29.
 Sample Applications 9-23

Data-Access JavaBean Samples
</jsp:useBean>

<HTML>
 <HEAD>
 <TITLE>
 DBBeanDemo JSP
 </TITLE>
 </HEAD>
 <BODY BGCOLOR=EOFFFO>
 <H1> Hello
 <%= (request.getRemoteUser() != null? ", " + request.getRemoteUser() : "") %>
 ! I am DBBeanDemo JSP.
 </H1>
 <HR>
 I’m using DBBean and querying DEPT & EMP tables in schema SCOTT.....
 I get all employees who work in the Research department.

 <P>
<%
 try {

 String sql_string = " select ENAME from EMP,DEPT " +
 " where DEPT.DNAME = 'RESEARCH' " +
 " and DEPT.DEPTNO = EMP.DEPTNO";

 // Make the Connection
 dbbean.connect();

 // Execute the SQL and get a HTML table
 out.println(dbbean.getResultAsHTMLTable(sql_string));

 // Close the Bean to close the connection
 dbbean.close();
 } catch (SQLException e) {
 out.println("<P>" + "There was an error doing the query:");
 out.println ("<PRE>" + e + "</PRE> \n <P>");
 }
%>

 </BODY>
</HTML>
9-24 JavaServer Pages Developer’s Guide and Reference

Data-Access JavaBean Samples
Page Using ConnBean—ConnBeanDemo.jsp
This page uses a ConnBean object (for a simple connection) to retrieve a
CursorBean object, then uses the CursorBean object to output query results as an
HTML table.

<%@ page import="java.sql.* , oracle.jsp.dbutil.*" %>

<!--
 * This is a basic JavaServer Page that uses a Connection Bean and queries
 * emp table in schema scott and outputs the result in an html table.
 *
--!>

<jsp:useBean id="cbean" class="oracle.jsp.dbutil.ConnBean" scope="session">
 <jsp:setProperty name="cbean" property="User" value="scott"/>
 <jsp:setProperty name="cbean" property="Password" value="tiger"/>
 <jsp:setProperty name="cbean" property="URL" value=
 "<%= (String)session.getValue(\"connStr\") %>"/>
 <jsp:setProperty name="cbean" property="PreFetch" value="5"/>
 <jsp:setProperty name="cbean" property="StmtCacheSize" value="2"/>
</jsp:useBean>

<HTML>
 <HEAD>
 <TITLE>
 Connection Bean Demo JSP
 </TITLE>
 </HEAD>
 <BODY BGCOLOR=EOFFFO>
 <H1> Hello
 <%= (request.getRemoteUser() != null? ", " + request.getRemoteUser() : "") %>
 ! I am Connection Bean Demo JSP.
 </H1>
 <HR>
 I’m using connection and a query bean and querying employee names
 and salaries from EMP table in schema SCOTT..

 <P>
<%
 try {

 // Make the Connection
 cbean.connect();
 Sample Applications 9-25

Data-Access JavaBean Samples
 String sql = "SELECT ename, sal FROM scott.emp ORDER BY ename";

 // get a Cursor Bean
 CursorBean cb = cbean.getCursorBean (CursorBean.PREP_STMT, sql);

 out.println(cb.getResultAsHTMLTable());

 // Close the cursor bean
 cb.close();
 // Close the Bean to close the connection
 cbean.close();
 } catch (SQLException e) {
 out.println("<P>" + "There was an error doing the query:");
 out.println ("<PRE>" + e + "</PRE> \n <P>");
 }
%>

 </BODY>
</HTML>

Page Using CursorBean—CursorBeanDemo.jsp
This page uses a ConnBean object (for a simple connection) and a CursorBean
object to execute a PL/SQL statement, get a REF CURSOR, and translate the results
into an HTML table.

<%@ page import="java.sql.* , oracle.jsp.dbutil.*" %>

<!--
 * This is a basic JavaServer Page that uses a Cursor and Conn Beans and queries
 * dept table in schema scott and outputs the result in an html table.
 *
--!>

<jsp:useBean id="connbean" class="oracle.jsp.dbutil.ConnBean" scope="session">
 <jsp:setProperty name="connbean" property="User" value="scott"/>
 <jsp:setProperty name="connbean" property="Password" value="tiger"/>
 <jsp:setProperty name="connbean" property="URL" value=
 "<%= (String)session.getValue(\"connStr\") %>" />
</jsp:useBean>
<jsp:useBean id="cbean" class="oracle.jsp.dbutil.CursorBean" scope="session">
 <jsp:setProperty name="cbean" property="PreFetch" value="10"/>
 <jsp:setProperty name="cbean" property="ExecuteBatch" value="2"/>
9-26 JavaServer Pages Developer’s Guide and Reference

Data-Access JavaBean Samples
</jsp:useBean>

<HTML>
 <HEAD>
 <TITLE>
 CursorBean Demo JSP
 </TITLE>
 </HEAD>
 <BODY BGCOLOR=EOFFFO>
 <H1> Hello
 <%= (request.getRemoteUser() != null? ", " + request.getRemoteUser() : "") %>
 ! I am Cursor Bean JSP.
 </H1>
 <HR>
 I‘m using cbean and i’m quering department names from DEPT table
 in schema SCOTT..

 <P>
<%

 try {

 // Make the Connection
 connbean.connect();

 String sql = "BEGIN OPEN ? FOR SELECT DNAME FROM DEPT; END;";

 // Create a Callable Statement
 cbean.create (connbean, CursorBean.CALL_STMT, sql);
 cbean.registerOutParameter(1,oracle.jdbc.driver.OracleTypes.CURSOR);

 // Execute the PLSQL
 cbean.executeUpdate ();

 // Get the Ref Cursor
 ResultSet rset = cbean.getCursor(1);

 out.println(oracle.jsp.dbutil.BeanUtil.translateToHTMLTable (rset));

 // Close the RefCursor
 rset.close();

 // Close the Bean
 cbean.close();
 Sample Applications 9-27

Data-Access JavaBean Samples
 // Close the connection
 connbean.close();

 } catch (SQLException e) {
 out.println("<P>" + "There was an error doing the query:");
 out.println ("<PRE>" + e + "</PRE> \n <P>");
 }
%>

 </BODY>
</HTML>

Page Using ConnCacheBean—ConnCacheBeanDemo.jsp
This page uses a ConnCacheBean object to obtain a connection from a connection
cache. It then uses standard JDBC functionality to execute a query, formatting the
results as an HTML table.

<%@ page import="java.sql.*, javax.sql.*, oracle.jsp.dbutil.ConnCacheBean" %>

<!--
 * This is a basic JavaServer Page that does a JDBC query on the
 * emp table in schema scott and outputs the result in an html table.
 * Uses Connection Cache Bean.
--!>

<jsp:useBean id="ccbean" class="oracle.jsp.dbutil.ConnCacheBean"
 scope="session">
 <jsp:setProperty name="ccbean" property="user" value="scott"/>
 <jsp:setProperty name="ccbean" property="password" value="tiger"/>
 <jsp:setProperty name="ccbean" property="URL" value=
 "<%= (String)session.getValue(\"connStr\") %>" />
 <jsp:setProperty name="ccbean" property="MaxLimit" value="5" />
 <jsp:setProperty name="ccbean" property="CacheScheme" value=
 "<%= ConnCacheBean.FIXED_RETURN_NULL_SCHEME %>" />
</jsp:useBean>
<HTML>
 <HEAD>
 <TITLE>
 SimpleQuery JSP
 </TITLE>
 </HEAD>
 <BODY BGCOLOR=EOFFFO>
9-28 JavaServer Pages Developer’s Guide and Reference

Data-Access JavaBean Samples
 <H1> Hello
 <%= (request.getRemoteUser() != null? ", " + request.getRemoteUser() : "") %>
 ! I am Connection Cache Demo Bean
 </H1>
 <HR>
 I will do a basic JDBC query to get employee data
 from EMP table in schema SCOTT. The connection is obtained from
 the Connection Cache.

 <P>
<%
 try {
 Connection conn = ccbean.getConnection();

 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("SELECT ename, sal " +
 "FROM scott.emp ORDER BY ename");
 if (rset.next()) {
%>
 <TABLE BORDER=1 BGCOLOR="C0C0C0">
 <TH WIDTH=200 BGCOLOR="white"> <I>Employee Name</I> </TH>
 <TH WIDTH=100 BGCOLOR="white"> <I>Salary</I> </TH>
 <TR> <TD ALIGN=CENTER> <%= rset.getString(1) %> </TD>
 <TD ALIGN=CENTER> $<%= rset.getDouble(2) %> </TD>
 </TR>

<% while (rset.next()) {
%>

 <TR> <TD ALIGN=CENTER> <%= rset.getString(1) %> </TD>
 <TD ALIGN=CENTER> $<%= rset.getDouble(2) %> </TD>
 </TR>

<% }
%>
 </TABLE>
<% }
 else {
%>
 <P> Sorry, the query returned no rows! </P>

<%
 }
 rset.close();
 Sample Applications 9-29

Data-Access JavaBean Samples
 stmt.close();
 conn.close();
 ccbean.close();
 } catch (SQLException e) {
 out.println("<P>" + "There was an error doing the query:");
 out.println ("<PRE>" + e + "</PRE> \n <P>");
 }
%>

 </BODY>
</HTML>
9-30 JavaServer Pages Developer’s Guide and Reference

Custom Tag Samples
Custom Tag Samples
This section includes the following:

■ a sample using some of the Oracle JSP Markup Language (JML) custom tags

■ referrals to additional custom tag samples elsewhere in this document

JML Tag Sample—hellouser_jml.jsp
This section provides a basic sample using some of the Oracle JML custom tags.

This is a modified version of the hellouser.jsp sample provided earlier in this
chapter. For contrast, both the JML code and the original code are provided here.

Note that the runtime implementation of the JML tag library is portable to other JSP
environments. For an overview of the runtime implementation, see "Overview of
the JSP Markup Language (JML) Sample Tag Library" on page 7-20. For information
about the compile-time (non-portable) implementation, see Appendix C,
"Compile-Time JML Tag Support".

Code for hellouser_jml.jsp (using JML tags)
<%---
 Copyright (c) 1999, Oracle Corporation. All rights reserved.
--%>

<%@page session="false" %>
<%@ taglib uri="WEB-INF/jml.tld" prefix="jml" %>

<jml:useForm id="name" param="newName" scope="request" />

<HTML>
<HEAD>
<TITLE>
Hello User
</TITLE>
</HEAD>

<BODY>

<jml:if condition="!name.isEmpty()" >
<H3>Welcome <jml:print eval="name.getValue()" /></H3>
</jml:if>

<P>
 Sample Applications 9-31

Custom Tag Samples
Enter your Name:
<FORM METHOD=get>
<INPUT TYPE=TEXT name=newName size = 20>

<INPUT TYPE=SUBMIT VALUE="Submit name">
</FORM>

</BODY>
</HTML>

Code for hellouser.jsp (not using JML tags)
<%---
 Copyright (c) 1999, Oracle Corporation. All rights reserved.
--%>

<%@page session="false" %>

<jsp:useBean id="name" class="oracle.jsp.jml.JmlString" scope="request" >
 <jsp:setProperty name="name" property="value" param="newName" />
</jsp:useBean>

<HTML>
<HEAD>
<TITLE>
Hello User
</TITLE>
</HEAD>

<BODY>

<% if (!name.isEmpty()) { %>
<H3>Welcome <%= name.getValue() %></H3>
<% } %>

<P>
Enter your Name:
<FORM METHOD=get>
<INPUT TYPE=TEXT name=newName size = 20>

<INPUT TYPE=SUBMIT VALUE="Submit name">
</FORM>

</BODY>
</HTML>
9-32 JavaServer Pages Developer’s Guide and Reference

Custom Tag Samples
Pointers to Additional Custom Tag Samples
Additional custom tag samples are provided elsewhere in this document:

■ For a complete example of defining and using a standard JSP 1.1-compliant
custom tag, see "End-to-End Example: Defining and Using a Custom Tag" on
page 7-15.

■ For samples using the Oracle custom tag library for SQL functionality, see "SQL
Tag Examples" on page 5-29.
 Sample Applications 9-33

Samples for Oracle-Specific Programming Extensions
Samples for Oracle-Specific Programming Extensions
This section provides a variety of examples using Oracle-specific extensions. This
includes the following:

■ Page Using JspScopeListener—scope.jsp

■ XML Query—XMLQuery.jsp

■ SQLJ Queries—SQLJSelectInto.sqljsp and SQLJIterator.sqljsp

Page Using JspScopeListener—scope.jsp
This sample illustrates the use of a JspScopeListener implementation to allow
JSP objects attached to a scope to be notified when they are going "out of scope".
The sample implements a generic listener that redispatches the out-of-scope
notification to the registered object or method. In using this listener, scope.jsp is
able to simulate page event handlers for request and page out-of-scope notification.

This sample creates and attaches a listener object to the request and page scopes.
It registers local methods to handle out-of-scope notifications forwarded by the
listener. To illustrate this, the sample keeps two counters—the first is a page count;
the second is a count of the number of included files.

The current page count is logged when the page goes out of scope. The included
page count is logged when the request goes out of scope. The sample then proceeds
to include itself five times.

The sample outputs six messages indicating a page count of 1, followed by a single
message indicating five jsp:include operations occurred.

For general information about the JspScopeListener mechanism, see "OracleJSP
Event Handling—JspScopeListener" on page 5-33.

Listener Implementation—PageEventDispatcher
PageEventDispatcher is a JavaBean that implements the JspScopeListener
interface. The interface defines the outOfScope() event method, which takes a
JspScopeEvent object as input. The outOfScope() method of a
PageEventDispatcher object is called when the scope (application,
session, page, or request) associated with the object is ending.

In this sample, a PageEventDispatcher object acts as a redispatcher for the JSP
page, allowing the JSP page to host the equivalent of globals.jsa "on end"
functionality for page and request events. The JSP page creates a
PageEventDispatcher object for each scope for which it wants to provide an
9-34 JavaServer Pages Developer’s Guide and Reference

Samples for Oracle-Specific Programming Extensions
event handler. It then registers the event handler method with the
PageEventDispatcher object. When the PageEventDispatcher object is
notified that it is going out of scope, it calls the registered "on end" method of the
page.

package oracle.jsp.sample.event;

import java.lang.reflect.*;
import oracle.jsp.event.*;

public class PageEventDispatcher extends Object implements JspScopeListener {

 private Object page;
 private String methodName;
 private Method method;

 public PageEventDispatcher() {
 }

 public Object getPage() {
 return page;
 }

 public void setPage(Object page) {
 this.page = page;
 }

 public String getMethodName() {
 return methodName;
 }

 public void setMethodName(String m)
 throws NoSuchMethodException, ClassNotFoundException {
 method = verifyMethod(m);
 methodName = m;
 }

 public void outOfScope(JspScopeEvent ae) {
 int scope = ae.getScope();

 if ((scope == javax.servlet.jsp.PageContext.REQUEST_SCOPE ||
 scope == javax.servlet.jsp.PageContext.PAGE_SCOPE) &&
 method != null) {
 try {
 Object args[] = {ae.getApplication(), ae.getContainer()};
 Sample Applications 9-35

Samples for Oracle-Specific Programming Extensions
 method.invoke(page, args);
 } catch (Exception e) {
 // catch all and continue
 }
 }
 }

 private Method verifyMethod(String m)
 throws NoSuchMethodException, ClassNotFoundException {
 if (page == null) throw new NoSuchMethodException
 ("A page hasn’t been set yet.");

 /* Don’t know whether this is a request or page handler so try one then
 the other
 */
 Class c = page.getClass();
 Class pTypes[] = {Class.forName("javax.servlet.ServletContext"),
 Class.forName("javax.servlet.jsp.PageContext")};

 try {
 return c.getDeclaredMethod(m, pTypes);
 } catch (NoSuchMethodException nsme) {
 // fall through and try the request signature
 }

 pTypes[1] = Class.forName("javax.servlet.http.HttpServletRequest");
 return c.getDeclaredMethod(m, pTypes);
 }
}

scope.jsp Source
This JSP page uses the preceding PageEventDispatcher class (which
implements the JspScopeListener interface) to track events of page or
request scope.

<%-- declare request and page scoped beans here --%>

<jsp:useBean id = "includeCount" class = "oracle.jsp.jml.JmlNumber" scope = "request" />
<jsp:useBean id = "pageCount" class = "oracle.jsp.jml.JmlNumber" scope = "page" >
 <jsp:setProperty name = "pageCount"
 property = "value" value = "<%= pageCount.getValue() + 1 %>" />
</jsp:useBean>
9-36 JavaServer Pages Developer’s Guide and Reference

Samples for Oracle-Specific Programming Extensions
<%-- declare the event dispatchers --%>
<jsp:useBean id = "requestDispatcher" class = "oracle.jsp.sample.event.PageEventDispatcher"
 scope = "request" >
 <jsp:setProperty name = "requestDispatcher" property = "page" value = "<%= this %>" />
 <jsp:setProperty name = "requestDispatcher" property = "methodName"
 value = "request_OnEnd" />
</jsp:useBean>

<jsp:useBean id = "pageDispatcher" class = "oracle.jsp.sample.event.PageEventDispatcher"
 scope = "page" >
 <jsp:setProperty name = "pageDispatcher" property = "page" value = "<%= this %>" />
 <jsp:setProperty name = "pageDispatcher" property = "methodName" value = "page_OnEnd" />
</jsp:useBean>

<%!
 // request_OnEnd Event Handler
 public void request_OnEnd(ServletContext application, HttpServletRequest request) {
 // acquire beans
 oracle.jsp.jml.JmlNumber includeCount =
 (oracle.jsp.jml.JmlNumber) request.getAttribute("includeCount");

 // now cleanup the bean
 if (includeCount != null) application.log
 ("request_OnEnd: Include count = " + includeCount.getValue());
 }

 // page_OnEnd Event Handler
 public void page_OnEnd(ServletContext application, PageContext page) {
 // acquire beans
 oracle.jsp.jml.JmlNumber pageCount =
 (oracle.jsp.jml.JmlNumber) page.getAttribute("pageCount");

 // now cleanup the bean -- uncomment code for real bean
 if (pageCount != null) application.log
 ("page_OnEnd: Page count = " + pageCount.getValue());
 }
%>

<%-- Page implementation goes here --%>

<jsp:setProperty name = "includeCount" property = "value"
 value = ’<%= (request.getAttribute("javax.servlet.include.request_uri")
 != null) ? includeCount.getValue() + 1 : 0 %>’ />

<h2> Hello World </h2>
 Sample Applications 9-37

Samples for Oracle-Specific Programming Extensions
Included: <%= request.getAttribute("javax.servlet.include.request_uri") %>
 Count: <%= includeCount.getValue() %>

<% if (includeCount.getValue() < 5) { %>
 <jsp:include page="scope.jsp" flush = "true" />
<% } %>

XML Query—XMLQuery.jsp
This example connects to a database or middle-tier database cache, executes a
query, and uses functionality of the oracle.xml.sql.query.OracleXMLQuery
class to output the results as an XML string.

This is Oracle-specific functionality. The OracleXMLQuery class is provided with
Oracle9i as part of the XML-SQL utility.

For general information about XML and XSL usage with JSP pages, see "OracleJSP
Support for XML and XSL" on page 5-9.

<%---
 Copyright (c) 1999, Oracle Corporation. All rights reserved.
--%>

<%@ page import = "java.sql.*,oracle.xml.sql.query.OracleXMLQuery" %>
<html>
 <head><title> The XMLQuery Demo </title></head>
<body>
<h1> XMLQuery Demo </h1>
<h2> Employee List in XML </h2>
(View Page Source in your browser to see XML output)
<% Connection conn = null;
 Statement stmt = null;
 ResultSet rset = null;
 try {

 // determine JDBC driver name from session value
 // if null, use JDBC kprb driver if in Oracle9i, JDBC oci otherwise
 String dbURL = (String)session.getValue("connStr");
 if (dbURL == null)
 dbURL = (System.getProperty("oracle.jserver.version") == null?
 "jdbc:oracle:oci8:@" : "jdbc:oracle:kprb:@");

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
9-38 JavaServer Pages Developer’s Guide and Reference

Samples for Oracle-Specific Programming Extensions
 conn = DriverManager.getConnection(dbURL, "scott", "tiger");
 stmt = conn.createStatement ();
 rset = stmt.executeQuery ("SELECT ename, sal " +
 "FROM scott.emp ORDER BY ename");
 OracleXMLQuery xq = new OracleXMLQuery(conn, rset); %>
 <PRE> <%= xq.getXMLString() %> </PRE>
<% } catch (java.sql.SQLException e) { %>
 <P> SQL error: <PRE> <%= e %> </PRE> </P>
<% } finally {
 if (stmt != null) stmt.close();
 if (rset != null) rset.close();
 if (conn != null) conn.close();
 } %>
</body>
</html>

SQLJ Queries—SQLJSelectInto.sqljsp and SQLJIterator.sqljsp
This section provides examples of using SQLJ in JSP pages to query a database or
the middle-tier database cache.

The first example, SQLJSelectInto.sqljsp, selects a single row using SQLJ
SELECT INTO syntax.

The second example, SQLJIterator.sqljsp, selects multiple rows into a SQLJ
iterator, which is similar to a JDBC result set.

For information about using SQLJ in JSP pages, see "OracleJSP Support for Oracle
SQLJ" on page 5-34.

For general information about Oracle SQLJ programming features and syntax, see
the Oracle9i SQLJ Developer’s Guide and Reference.

Code for SQLJSelectInto.sqljsp (select single row)
This example selects a single row from the database or middle-tier database cache,
using SQLJ SELECT INTO syntax.

<%@ page import="sqlj.runtime.ref.DefaultContext,oracle.sqlj.runtime.Oracle" %>

<HTML>
<HEAD> <TITLE> The SQLJSelectInto JSP </TITLE> </HEAD>
<BODY BGCOLOR=white>

<%
 Sample Applications 9-39

Samples for Oracle-Specific Programming Extensions
 String connStr=request.getParameter("connStr");
 if (connStr==null) {
 connStr=(String)session.getValue("connStr");
 } else {
 session.putValue("connStr",connStr);
 }
 if (connStr==null) { %>
<jsp:forward page="../setconn.jsp" />
<%
 }
%>

<%
 String empno = request.getParameter("empno");
 if (empno != null) { %>
 <H3> Employee # <%=empno %> Details: </H3>
 <%= runQuery(connStr,empno) %>
 <HR>

<% } %>

Enter an employee number:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="empno" SIZE=10>
<INPUT TYPE="submit" VALUE="Ask Oracle");
</FORM>
</BODY>
</HTML>
<%!
 private String runQuery(String connStr, String empno) throws
java.sql.SQLException {
 DefaultContext dctx = null;
 String ename = null; double sal = 0.0; String hireDate = null;
 StringBuffer sb = new StringBuffer();
 try {
 dctx = Oracle.getConnection(connStr, "scott", "tiger");
 #sql [dctx] { SELECT ename, sal, TO_CHAR(hiredate, ’DD-MON-YYYY’)
 INTO :ename, :sal, :hireDate
 FROM scott.emp WHERE UPPER(empno) = UPPER(:empno)
 };
 sb.append("<BLOCKQUOTE><BIG><PRE>\n");
 sb.append("Name : " + ename + "\n");
 sb.append("Salary : " + sal + "\n");
 sb.append("Date hired : " + hireDate);
 sb.append("</PRE></BIG></BLOCKQUOTE>");
9-40 JavaServer Pages Developer’s Guide and Reference

Samples for Oracle-Specific Programming Extensions
 } catch (java.sql.SQLException e) {
 sb.append("<P> SQL error: <PRE> " + e + " </PRE> </P>\n");
 } finally {
 if (dctx!= null) dctx.close();
 }
 return sb.toString();
 }
%>

Code for SQLJIterator.sqljsp (select multiple rows)
This example selects multiple rows from the database or middle-tier database cache,
using a SQLJ iterator.

<%@ page import="java.sql.*" %>
<%@ page import="sqlj.runtime.ref.DefaultContext,oracle.sqlj.runtime.Oracle" %>

<!--
 * This is a SQLJ JavaServer Page that does a SQLJ query on the
 * emp table in schema scott and outputs the result in an html table.
 *
--!>

<%! #sql iterator Empiter(String ename, double sal, java.sql.Date hiredate) %>

<%
 String connStr=request.getParameter("connStr");
 if (connStr==null) {
 connStr=(String)session.getValue("connStr");
 } else {
 session.putValue("connStr",connStr);
 }
 if (connStr==null) { %>
<jsp:forward page="../setconn.jsp" />
<%
 }
%>

<%
 DefaultContext dctx = null;
 dctx = Oracle.getConnection(connStr, "scott", "tiger");
%>

<HTML>
 Sample Applications 9-41

Samples for Oracle-Specific Programming Extensions
<HEAD> <TITLE> The SqljIterator SQLJSP </TITLE> </HEAD>
<BODY BGCOLOR="E0FFF0">
 <% String user;
 #sql [dctx] {SELECT user INTO :user FROM dual};
 %>

 <H1> Hello, <%= user %>! </H1>
 <HR>
 I will use a SQLJ iterator to get employee data
 from EMP table in schema SCOTT..

 <P>
<%
 Empiter emps;
 try {
 #sql [dctx] emps = { SELECT ename, sal, hiredate
 FROM scott.emp ORDER BY ename};
 if (emps.next()) {
%>
 <TABLE BORDER=1 BGCOLOR="C0C0C0">
 <TH WIDTH=200 BGCOLOR=white> Employee Name </TH>
 <TH WIDTH=100 BGCOLOR=white> Salary </TH>
 <TR> <TD> <%= emps.ename() %> </TD>
 <TD> <%= emps.sal() %> </TD>
 </TR>

<% while (emps.next()) {
%>
 <TR> <TD> <%= emps.ename() %> </TD>
 <TD> <%= emps.sal() %> </TD>
 </TR>
<% } %>
 </TABLE>
<% } else { %>
 <P> Sorry, the query returned no rows! </P>
<% }
 emps.close();
 } catch (SQLException e) { %>
 <P>There was an error doing the query:<PRE> <%= e %> </PRE> <P>
<% } %>
</BODY>
</HTML>
9-42 JavaServer Pages Developer’s Guide and Reference

Samples Using globals.jsa for Servlet 2.0 Environments
Samples Using globals.jsa for Servlet 2.0 Environments
This section has examples of how the Oracle globals.jsa mechanism can be used
in servlet 2.0 environments to provide an application framework and
application-based and session-based event handling. The following examples are
provided:

■ globals.jsa Example for Application Events—lotto.jsp

■ globals.jsa Example for Application and Session Events—index1.jsp

■ globals.jsa Example for Global Declarations—index2.jsp

For information about globals.jsa usage, see "OracleJSP Application and
Session Support for Servlet 2.0" on page 5-38.

globals.jsa Example for Application Events—lotto.jsp
This sample illustrates OracleJSP globals.jsa event handling through the
application_OnStart and application_OnEnd event handlers. In this
sample, numbers are cached on a per-user basis for the duration of the day. As a
result, only one set of numbers is ever presented to a user for a given lottery
drawing. In this sample, a user is identified by their IP address.

Code has been written for application_OnStart and application_OnEnd to
make the cache persistent across application shutdowns. The sample writes the
cached data to a file as it is being terminated and reads from the file as it is being
restarted (presuming the server is restarted the same day that the cache was
written).

Note: The examples in this section base some of their functionality
on application shutdown. Many servers do not allow an application
to be shut down manually. In this case, globals.jsa cannot
function as an application marker. However, you can cause the
application to be automatically shut down and restarted
(presuming developer_mode=true) by updating either the
lotto.jsp source or the globals.jsa file. (The OracleJSP
container always terminates a running application before
retranslating and reloading an active page.)
 Sample Applications 9-43

Samples Using globals.jsa for Servlet 2.0 Environments
globals.jsa File for lotto.jsp
<%@ page import="java.util.*, oracle.jsp.jml.*" %>

<jsp:useBean id = "cachedNumbers" class = "java.util.Hashtable" scope = "application" />

<event:application_OnStart>

<%
 Calendar today = Calendar.getInstance();
 application.setAttribute("today", today);
 try {
 FileInputStream fis = new FileInputStream
 (application.getRealPath("/")+File.separator+"lotto.che");
 ObjectInputStream ois = new ObjectInputStream(fis);
 Calendar cacheDay = (Calendar) ois.readObject();
 if (cacheDay.get(Calendar.DAY_OF_YEAR) == today.get(Calendar.DAY_OF_YEAR)) {
 cachedNumbers = (Hashtable) ois.readObject();
 application.setAttribute("cachedNumbers", cachedNumbers);
 }
 ois.close();
 } catch (Exception theE) {
 // catch all -- can’t use persistent data
 }
%>

</event:application_OnStart>

<event:application_OnEnd>

<%
 Calendar now = Calendar.getInstance();
 Calendar today = (Calendar) application.getAttribute("today");
 if (cachedNumbers.isEmpty() ||
 now.get(Calendar.DAY_OF_YEAR) > today.get(Calendar.DAY_OF_YEAR)) {
 File f = new File(application.getRealPath("/")+File.separator+"lotto.che");
 if (f.exists()) f.delete();
 return;
 }

 try {
 FileOutputStream fos = new FileOutputStream
 (application.getRealPath("/")+File.separator+"lotto.che");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(today);
 oos.writeObject(cachedNumbers);
9-44 JavaServer Pages Developer’s Guide and Reference

Samples Using globals.jsa for Servlet 2.0 Environments
 oos.close();
 } catch (Exception theE) {
 // catch all -- can’t use persistent data
 }
%>

</event:application_OnEnd>

lotto.jsp Source
<%@ page session = "false" %>
<jsp:useBean id = "picker" class = "oracle.jsp.sample.lottery.LottoPicker" scope = "page" />

<HTML>
<HEAD><TITLE>Lotto Number Generator</TITLE></HEAD>
<BODY BACKGROUND="images/cream.jpg" BGCOLOR="#FFFFFF">
<H1 ALIGN="CENTER"></H1>

<!-- <H1 ALIGN="CENTER"> IP: <%= request.getRemoteAddr() %>
 -->
<H1 ALIGN="CENTER">Your Specially Picked</H1>
<P ALIGN="CENTER"><IMG SRC="images/winningnumbers.gif" WIDTH="450" HEIGHT="69" ALIGN="BOTTOM"
BORDER="0"></P>
<P>

<P ALIGN="CENTER">
<TABLE ALIGN="CENTER" BORDER="0" CELLPADDING="0" CELLSPACING="0">
<TR>
<%
 int[] picks;
 String identity = request.getRemoteAddr();

 // Make sure its not tomorrow
 Calendar now = Calendar.getInstance();
 Calendar today = (Calendar) application.getAttribute("today");
 if (now.get(Calendar.DAY_OF_YEAR) > today.get(Calendar.DAY_OF_YEAR)) {
 System.out.println("New day....");
 cachedNumbers.clear();
 today = now;
 application.setAttribute("today", today);
 }

 synchronized (cachedNumbers) {
 Sample Applications 9-45

Samples Using globals.jsa for Servlet 2.0 Environments
 if ((picks = (int []) cachedNumbers.get(identity)) == null) {
 picks = picker.getPicks();
 cachedNumbers.put(identity, picks);
 }
 }
 for (int i = 0; i < picks.length; i++) {
%>
 <TD>
 <IMG SRC="images/ball<%= picks[i] %>.gif" WIDTH="68" HEIGHT="76" ALIGN="BOTTOM" BORDER="0">
 </TD>

<%
 }
%>
</TR>
</TABLE>

</P>

<P ALIGN="CENTER">

</BODY>
</HTML>

globals.jsa Example for Application and Session Events—index1.jsp
This example uses a globals.jsa file to process applications and session lifecycle
events. It counts the number of active sessions, the total number of sessions, and the
total number of times the application page has been hit. Each of these values is
maintained at the application scope. The application page (index1.jsp)
updates the page hit count on each request. The globals.jsa
session_OnStart event handler increments the number of active sessions and
the total number of sessions. The globals.jsa session_OnEnd handler
decrements the number of active sessions by one.

The page output is simple. When a new session starts, the session counters are
output. The page counter is output on every request. The final tally of each value is
output in the globals.jsa application_OnEnd event handler.
9-46 JavaServer Pages Developer’s Guide and Reference

Samples Using globals.jsa for Servlet 2.0 Environments
Note the following in this example:

■ When the counter variables are updated, access must be synchronized, as these
values are maintained at application scope.

■ The count values use the OracleJSP oracle.jsp.jml.JmlNumber extended
datatype, which simplifies the use of data values at application scope. (For
information about the JML extended datatypes, see "JML Extended Datatypes"
on page 5-2.)

globals.jsa File for index1.jsp
<%@ taglib uri="oracle.jsp.parse.OpenJspRegisterLib" prefix="jml" %>

<event:application_OnStart>

 <%-- Initializes counts to zero --%>
 <jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

 <%-- Consider storing pageCount persistently -- If you do read it here --%>

</event:application_OnStart>

<event:application_OnEnd>
 <%-- Acquire beans --%>
 <jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />

 <% application.log("The number of page hits were: " + pageCount.getValue()); %>
 <% application.log("The number of client sessions were: " + sessionCount.getValue()); %>

 <%-- Consider storing pageCount persistently -- If you do write it here --%>

</event:application_OnEnd>

<event:session_OnStart>

 <%-- Acquire beans --%>
 <jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <%
 synchronized (sessionCount) {
 sessionCount.setValue(sessionCount.getValue() + 1);
 Sample Applications 9-47

Samples Using globals.jsa for Servlet 2.0 Environments
 %>

 Starting session #: <%= sessionCount.getValue() %>

 <%
 }
 %>
 <%
 synchronized (activeSessions) {
 activeSessions.setValue(activeSessions.getValue() + 1);
 %>
 There are currently <%= activeSessions.getValue() %> active sessions <p>
 <%
 }
 %>

</event:session_OnStart>

<event:session_OnEnd>

 <%-- Acquire beans --%>
 <jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />
 <%
 synchronized (activeSessions) {
 activeSessions.setValue(activeSessions.getValue() - 1);
 }
 %>

</event:session_OnEnd>

index1.jsp Source
<%-- Acquire beans --%>
<jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />

<%
 synchronized(pageCount) {
 pageCount.setValue(pageCount.getValue() + 1);
 }
%>

This page has been accessed <%= pageCount.getValue() %> times.

<p>
9-48 JavaServer Pages Developer’s Guide and Reference

Samples Using globals.jsa for Servlet 2.0 Environments
globals.jsa Example for Global Declarations—index2.jsp
This example uses a globals.jsa file to declare variables globally. It is based on
the event handler sample in "globals.jsa Example for Application and Session
Events—index1.jsp" on page 9-46, but differs in that the three application counter
variables are declared globally. (In the original event-handler sample, by contrast,
each event handler and the JSP page itself had to provide jsp:useBean statements
to locally declare the beans they were accessing.)

Declaring the beans globally results in implicit declaration in all event handlers and
the JSP page.

globals.jsa File for index2.jsp
<%-- globally declares variables and initializes them to zero --%>

<jsp:useBean id="pageCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
<jsp:useBean id="sessionCount" class="oracle.jsp.jml.JmlNumber" scope = "application" />
<jsp:useBean id="activeSessions" class="oracle.jsp.jml.JmlNumber" scope = "application" />

<event:application_OnStart>

 <%-- Consider storing pageCount persistently -- If you do read it here --%>

</event:application_OnStart>

<event:application_OnEnd>

 <% application.log("The number of page hits were: " + pageCount.getValue()); %>
 <% application.log("The number of client sessions were: " + sessionCount.getValue()); %>

 <%-- Consider storing pageCount persistently -- If you do write it here --%>

</event:application_OnEnd>

<event:session_OnStart>

 <%
 synchronized (sessionCount) {
 sessionCount.setValue(sessionCount.getValue() + 1);
 %>

 Starting session #: <%= sessionCount.getValue() %>

 Sample Applications 9-49

Samples Using globals.jsa for Servlet 2.0 Environments
 <%
 }
 %>

 <%
 synchronized (activeSessions) {
 activeSessions.setValue(activeSessions.getValue() + 1);
 %>
 There are currently <%= activeSessions.getValue() %> active sessions <p>
 <%
 }
 %>

</event:session_OnStart>

<event:session_OnEnd>

 <%
 synchronized (activeSessions) {
 activeSessions.setValue(activeSessions.getValue() - 1);
 }
 %>

</event:session_OnEnd>

index2.jsp Source
<%-- pageCount declared in globals.jsa so active in all pages --%>

<%
 synchronized(pageCount) {
 pageCount.setValue(pageCount.getValue() + 1);
 }
%>

This page has been accessed <%= pageCount.getValue() %> times.

<p>
9-50 JavaServer Pages Developer’s Guide and Reference

 General Installation and Configu
A

General Installation and Configuration

This appendix provides general information about installing OracleJSP, configuring
the Web server to run OracleJSP, and configuring OracleJSP. The technical
information focuses on common Web servers and servlet environments:

■ Apache/JServ

■ JSWDK (the Sun Microsystems JavaServer Web Developer’s Kit)

■ Tomcat (from Apache, in cooperation with Sun Microsystems)

For Oracle environments that support OracleJSP, reference is made to
documentation for those products for installation and configuration instructions.

For the Oracle9i Servlet Engine, translation-time configuration is handled through
options of the OracleJSP pre-translation utility, as described in "The ojspc
Pre-Translation Tool" on page 6-26.

This appendix includes the following topics:

■ System Requirements

■ OracleJSP Installation and Web Server Configuration

■ OracleJSP Configuration
ration A-1

System Requirements
System Requirements
OracleJSP is a pure Java environment. The system on which you install it must meet
the following minimum requirements.

operating system: any OS that supports JDK 1.1.x or higher

Java version: JDK 1.1.x or 1.2.x (or higher)
(Oracle recommends the most current version available
for your platform, preferably JDK 1.1.8 or higher.)

Java compiler: the standard javac provided with your JDK
(You can, however, use alternative compilers instead.)

Web server: any Web server that supports servlets

servlet environment: any servlet container implementing the servlet 2.0
specification or higher

Note: The servlet library for your servlet environment must be
installed on your system and included in the classpath in your Web
server configuration file. This library contains the standard
javax.servlet.* packages.

For example, in an Apache/JServ environment (including the
Oracle9i Application Server), you will need jsdk.jar, which is
provided with the Sun Microsystems JSDK 2.0. In a Sun
Microsystems JSWDK environment, you will need servlet.jar
(servlet 2.1 version), which is provided with JSWDK 1.0. In a
Tomcat environment, you will need servlet.jar (servlet 2.2
version), which is provided with Tomcat 3.1. Do not confuse JSDK
(Java Servlet Developer’s Kit) with JSWDK (JavaServer Web
Developer’s Kit).

See "Configuration of Web Server and Servlet Environment to Run
OracleJSP" on page A-7 for further discussion of classpath settings
in a Web server configuration file.
A-2 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration
OracleJSP Installation and Web Server Configuration
This section discusses OracleJSP installation and related Web server configuration
for various JSP environments. The following environments are considered:

■ Apache/JServ

■ Sun Microsystems JSWDK

■ Tomcat

■ Oracle9i Servlet Engine (OSE)

■ other Oracle environments

This discussion assumes that your target system, which might be either a
development environment or a deployment environment, meets the requirements
specified in "System Requirements" on page A-2. It also assumes that you have
verified you can do the following:

■ run Java

■ run a Java compiler (typically the standard javac)

■ run an HTTP servlet

Required and Optional Files for OracleJSP
This section summarizes JAR and ZIP files required for OracleJSP, as well as
optional JAR and ZIP files to use Oracle JDBC and SQLJ functionality, JML or SQL
custom tags, or custom data-access JavaBeans. The summary of files is followed by
a discussion of how to install OracleJSP files on non-Oracle environments, and a list
of Oracle environments that already provide OracleJSP.

Required files must also be added to your classpath. (See "Add OracleJSP-Related
JAR and ZIP Files to Web Server Classpath" on page A-8.)

Note:

■ Examples here are for a UNIX environment, but the basic
information (such as directory names and file names) applies to
other environments as well.

■ Web server configuration information focuses on prevalent
non-Oracle environments. For Oracle environments, refer to
documentation for the particular product (such as the Oracle9i
Application Server or Web-to-go).
 General Installation and Configuration A-3

OracleJSP Installation and Web Server Configuration
Summary of Files

The following files are provided with OracleJSP and must be installed on your
system:

■ ojsp.jar (OracleJSP)

■ xmlparserv2.jar (for XML parsing—required for the web.xml deployment
descriptor and any tag library descriptors)

■ servlet.jar (standard servlet library, servlet 2.2 version)

In addition, if your JSP pages will use Oracle JSP Markup Language (JML) tags,
SQL tags, or data-access JavaBeans, you will need the following files:

■ ojsputil.jar

■ xsu12.jar, for JDK 1.2.x, or xsu111.jar, for JDK 1.1.x (in OSE, or for XML
functionality on the client)

To run in the Oracle9i Servlet Engine, xsu12.jar or xsu111.jar must be
installed prior to or simultaneously with ojsputil.jar. (This should be handled
automatically in a normal Oracle9i installation.) To run in a client environment,
however, xsu12.jar or xsu111.jar is required only if you will use XML
functionality in the data-access JavaBeans (such as getting a result set as an XML
string). The xsu12.jar and xsu111.jar files are included with Oracle9i.

For Oracle data access, you will also need the following:

■ Oracle JDBC class files (for any Oracle data access)

■ Oracle SQLJ class files (if using SQLJ code in your JSP pages)

See "Files for JDBC (optional)" on page A-5 and "Files for SQLJ (optional)" on
page A-5 for more information.

To use JDBC data sources or Enterprise JavaBeans, you will need the following:

■ jndi.jar

(This file is required for some of the OracleJSP demos.)

Servlet Library Notes Note that OracleJSP 1.1.x releases require and supply the 2.2
version of the servlet library, which is where the standard javax.servlet.*

Note: Refer to the Oracle9i Java Developer’s Guide for the locations
of these files on the Oracle9i product CD.
A-4 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration
packages are located. Your Web server environment likely requires and supplies a
different servlet library version. You must be careful in your classpath to have the
version for your Web server precede the version for OracleJSP. "Add
OracleJSP-Related JAR and ZIP Files to Web Server Classpath" on page A-8 further
discusses this.

Table A–1 summarizes the servlet library versions. Do not confuse the Sun
Microsystems JSWDK (JavaServer Web Developer’s Kit) with the Sun Microsystems
JSDK (Java Servlet Developer’s Kit).

(For Apache/JServ, download jsdk.jar separately.)

Files for JDBC (optional) The following files are required if you will use Oracle JDBC
for data access. (Be aware that Oracle SQLJ uses Oracle JDBC.)

■ classes12.zip or .jar (for JDK 1.2.x environments)

or:

■ classes111.zip or .jar (for JDK 1.1.x environments)

Files for SQLJ (optional) The following files are necessary if your JSP pages use Oracle
SQLJ for their data access:

■ translator.zip or .jar (for the SQLJ translator, for JDK 1.2.x or 1.1.x)

as well as the appropriate SQLJ runtime:

■ runtime12.zip or .jar (for JDK 1.2.x with Oracle9i JDBC)

or:

■ runtime12ee.zip or .jar (for JDK 1.2.x enterprise edition with Oracle9i
JDBC)

or:

■ runtime11.zip or .jar (for JDK 1.1.x with Oracle9i JDBC)

Table A–1 Servlet Library Versions

Servlet Library Version Library File Name Provided with:

servlet 2.2 servlet.jar OracleJSP, Tomcat 3.1

servlet 2.1 servlet.jar Sun JSWDK 1.0

servlet 2.0 jsdk.jar Sun JSDK 2.0; also used with Apache/JServ
 General Installation and Configuration A-5

OracleJSP Installation and Web Server Configuration
or:

■ runtime.zip or .jar (more general—for JDK 1.2.x or 1.1.x with any Oracle
JDBC version)

or:

■ runtime-nonoracle.zip or .jar (generic—for use with non-Oracle JDBC
drivers and any JDK environment)

(The JDK 1.2.x enterprise edition allows datasource support, in compliance with the
SQLJ ISO specification.)

File Installation for Non-Oracle Environments
To run OracleJSP in a non-Oracle environment—typically Apache/JServ, the Sun
Microsystems JSWDK, or Tomcat—download the OracleJSP files from the Oracle
Technology Network (OTN) at the following URL:

http://technet.oracle.com/tech/java/servlets/index.htm

Click on "Software" in the button bar near the top of this page.

You will need an OTN account, but membership is free of charge. Click on
"Membership" in the bar at the top of the page if you do not already have an
account.

For the OTN download, OracleJSP files are contained within ojsp.zip, which
includes files mentioned in this section, configuration files discussed later in this
appendix, release notes, documentation files, and sample applications.

Installation and configuration instructions are included in ojsp.zip—see
install.htm for top-level information and links. However, you can use this
appendix for detailed information about configuring the predominant non-Oracle
Web server environments—Apache/JServ, the Sun Microsystems JSWDK, and
Tomcat—to use OracleJSP.

You can choose any desired root directory for OracleJSP, as long as the location you
choose is reflected in your Web server classpath settings (discussed in "Add
OracleJSP-Related JAR and ZIP Files to Web Server Classpath" on page A-8).

Oracle JDBC and SQLJ files are also available from OTN separately at the following
URL:

http://technet.oracle.com/tech/java/sqlj_jdbc/index.htm

Click on "Software" in the button bar near the top of this page.
A-6 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration
(Alternatively, if you have an appropriate Oracle product CD such as for the
Oracle9i database, Oracle9i Application Server, Oracle Web-to-go, or Oracle
JDeveloper, you can get OracleJSP files from that CD and place them as desired.)

Oracle Environments Providing OracleJSP
The following Oracle environments provide OracleJSP and a Web server or Web
listener, starting with the release numbers noted:

■ Oracle9i Servlet Engine (OSE), release 8.1.7 and beyond

■ Oracle9i Application Server (or Oracle Internet Application Server), release 1.0.0
and beyond

■ Oracle Application Server (previous product, pre-dating the Oracle Internet
Application Server), release 4.0.8.2 and beyond

■ Oracle Web-to-go, release 1.3 and beyond (can be used with Oracle9i Lite)

■ Oracle JDeveloper, release 3.0 and beyond

In any of these environments, OracleJSP components are included with the product
installation.

If you are targeting OSE you will need a client-side development and testing
environment—probably Oracle JDeveloper or perhaps a non-Oracle development
tool. When you have completed preliminary testing in your development
environment, you can deploy JSP pages to Oracle9i, as described in Chapter 6, "JSP
Translation and Deployment".

Configuration of Web Server and Servlet Environment to Run OracleJSP
Configuring your Web server to run OracleJSP pages requires the following general
steps:

1. Add OracleJSP-related JAR and ZIP files to the Web server classpath.

2. Configure the Web server to map JSP file name extensions (.jsp and .JSP and,
optionally, .sqljsp and .SQLJSP) to the Oracle JspServlet, which is the
front-end of the OracleJSP container.

Notes: The Oracle9i Application Server uses an Apache/JServ
environment, but you should use application server installation
and configuration instructions instead of the Apache/JServ
instructions in this appendix.
 General Installation and Configuration A-7

OracleJSP Installation and Web Server Configuration
These steps apply to any Web server environment, but the information in this
section focuses on the most prevalent non-Oracle environments— Apache/JServ,
the Sun Microsystems JSWDK, and Tomcat.

The Oracle9i Servlet Engine, provided with Oracle9i, is automatically configured
upon installation to run OracleJSP, other than the steps documented in "Additional
Steps to Run Servlets and JSP Pages in OSE" on page A-14. For other Oracle
environments, refer to the documentation for those products, because procedures
vary. (Much of the installation and configuration may be automatic.)

Add OracleJSP-Related JAR and ZIP Files to Web Server Classpath
You must update the Web server classpath to add JAR and ZIP files that are
required by OracleJSP, being careful to add them in the proper order. (In particular,
you must be careful as to where you place the servlet 2.2 version of servlet.jar
in the classpath, as described below.) This includes the following:

■ ojsp.jar

■ xmlparserv2.jar

■ servlet.jar (servlet 2.2 version)

(Note that the servlet.jar supplied with OracleJSP is identical to the
servlet.jar provided with Tomcat 3.1.)

■ ojsputil.jar (optional, for JML tags, SQL tags, and data-access JavaBeans)

■ xsu12.jar, for JDK 1.2.x, or xsu111.jar, for JDK 1.1.x (optional, for JML
tags, SQL tags, and data-access JavaBeans)

■ additional optional ZIP and JAR files, as necessary, for JDBC and SQLJ

See "Summary of Files" on page A-4 for additional information.

Apache/JServ Environment In an Apache/JServ environment, add appropriate
wrapper.classpath commands to the jserv.properties file in the JServ
conf directory. Note that jsdk.jar should already be in the classpath. This file is

Important: You must also ensure that OracleJSP can find javac
(or an alternative Java compiler, according to your javaccmd
configuration parameter setting). For javac in a JDK 1.1.x
environment, the JDK classes.zip file must be in the Web server
classpath. For javac in a JDK 1.2.x environment, the JDK
tools.jar file must be in the Web server classpath.
A-8 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration
from the Sun Microsystems JSDK 2.0 and provides servlet 2.0 versions of the
javax.servlet.* packages that are required by Apache/JServ. Additionally, files
for your JDK environment should already be in the classpath.

The following example (which happens to use UNIX directory paths) includes files
for OracleJSP, JDBC, and SQLJ. Replace [Oracle_Home] with your Oracle Home
path.

servlet 2.0 APIs (required by Apache/JServ, from Sun JSDK 2.0):
wrapper.classpath=jsdk2.0/lib/jsdk.jar
#
servlet 2.2 APIs (required and provided by OracleJSP):
wrapper.classpath=[Oracle_Home]/ojsp/lib/servlet.jar
OracleJSP packages:
wrapper.classpath=[Oracle_Home]/ojsp/lib/ojsp.jar
wrapper.classpath=[Oracle_Home]/ojsp/lib/ojsputil.jar
XML parser (used for servlet 2.2 web deployment descriptor):
wrapper.classpath=[Oracle_Home]/ojsp/lib/xmlparserv2.jar
JDBC libraries for Oracle database access (JDK 1.2.x environment):
wrapper.classpath=[Oracle_Home]/ojsp/lib/classes12.zip
SQLJ translator (optional):
wrapper.classpath=[Oracle_Home]/ojsp/lib/translator.zip
SQLJ runtime (optional) (for JDK 1.2.x enterprise edition):
wrapper.classpath=[Oracle_Home]/ojsp/lib/runtime12.zip

Now consider an example where you have the following useBean command:

<jsp:useBean id="queryBean" class="mybeans.JDBCQueryBean" scope="session" />

You can add the following wrapper.classpath command to the
jserv.properties file. (This example happens to be for a Windows NT
environment.)

wrapper.classpath=D:\Apache\Apache1.3.9\beans\

And then JDBCQueryBean.class should be located as follows:

D:\Apache\Apache1.3.9\beans\mybeans\JDBCQueryBean.class

Important: In an Apache/JServ environment, jsdk.jar must
precede servlet.jar in the classpath.
 General Installation and Configuration A-9

OracleJSP Installation and Web Server Configuration
JSWDK Environment Update the startserver script in the jswdk-1.0 root
directory to add OracleJSP files to the jspJars environment variable. Append
them to the last .jar file listed, using the appropriate directory syntax and
separator character for your operating system, such as a colon (":") for UNIX or a
semi-colon (";") for Windows NT. Here is an example:

jspJars=./lib/jspengine.jar:./lib/ojsp.jar:./lib/ojsputil.jar

This example (with UNIX syntax) assumes that the JAR files are in the lib
subdirectory under the jswdk-1.0 root directory.

Similarly, update the startserver script to specify any additional required files in
the miscJars environment variable, such as in the following example:

miscJars=./lib/xml.jar:./lib/xmlparserv2.jar:./lib/servlet.jar

This example (with UNIX syntax) also assumes that the files are in the lib
subdirectory under the jswdk-1.0 root directory.

Tomcat Environment For Tomcat, the procedure for adding files to the classpath is
more operating-system dependent than for the other servlet environments
discussed here.

For a UNIX operating system, copy the OracleJSP JAR and ZIP files to your
[TOMCAT_HOME]/lib directory. This directory is automatically included in the
Tomcat classpath.

For a Windows NT operating system, update the tomcat.bat file in the
[TOMCAT_HOME]\bin directory to individually add each OracleJSP file to the
CLASSPATH environment variable. The following example presumes that you have
copied the files to the [TOMCAT_HOME]\lib directory:

set CLASSPATH=%CLASSPATH%;%TOMCAT_HOME%\lib\ojsp.jar;%TOMCAT_HOME%\lib\ojsputil.jar

Important: In a JSWDK environment, the servlet 2.1 version of
servlet.jar (provided with Sun JSWDK 1.0) must precede the
servlet 2.2 version of servlet.jar (provided with OracleJSP) in
your classpath.

The servlet 2.1 version is typically in the jsdkJars environment
variable. The overall classpath is formed through a combination of
various xxxJars environment variables, including jsdkJars,
jspJars, and miscJars. Examine the startserver script to
verify that miscJars is added to the classpath after jsdkJars.
A-10 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration
The servlet 2.2 version of servlet.jar (the same version that is provided with
OracleJSP) is already included with Tomcat, so it needs no consideration.

Map JSP File Name Extensions to Oracle JspServlet
You must configure the Web server to be able to do the following:

■ recognize appropriate file name extensions as JSP pages

Map .jsp and .JSP. Also map .sqljsp and .SQLJSP if your JSP pages use
Oracle SQLJ.

■ find and execute the servlet that begins processing JSP pages

In OracleJSP, this is oracle.jsp.JspServlet, which you can think of as the
front-end of the Oracle JSP container.

Apache/JServ Environment In an Apache/JServ environment, mapping each JSP file
name extension to the Oracle JspServlet requires just a single step. In the JServ
conf directory, update the configuration file—jserv.conf or
mod_jserv.conf—to add ApJServAction commands to perform the mappings.

(In older versions, you must instead update the httpd.conf file in the Apache
conf directory. In newer versions, the jserv.conf or mod_jserv.conf file is
"included" into httpd.conf during execution—look at the httpd.conf file to see
which one it includes.)

Following is an example (which happens to use UNIX syntax):

Map file name extensions (.sqljsp and .SQLJSP are optional).
ApJServAction .jsp /servlets/oracle.jsp.JspServlet
ApJServAction .JSP /servlets/oracle.jsp.JspServlet
ApJServAction .sqljsp /servlets/oracle.jsp.JspServlet
ApJServAction .SQLJSP /servlets/oracle.jsp.JspServlet

Important: With the above configurations, OracleJSP will support
page references that use either a .jsp file name extension or a
.JSP file name extension, but the case in the reference must match
the actual file name in a case-sensitive environment. If the file name
is file.jsp, you can reference it that way, but not as file.JSP. If
the file name is file.JSP, you can reference it that way, but not as
file.jsp. (The same holds true for .sqljsp versus .SQLJSP.)
 General Installation and Configuration A-11

OracleJSP Installation and Web Server Configuration
The path you use in this command for oracle.jsp.JspServlet is not a literal
directory path in the file system. The path to specify depends on your
Apache/JServ servlet configuration—how the servlet zone is mounted, the name of
the zone properties file, and the file system directory that is specified as the
repository for the servlet. ("Servlet zone" is an Apache/JServ term that is similar
conceptually to "servlet context".) Consult your Apache/JServ documentation for
more information.

JSWDK Environment In a JSWDK environment, mapping each JSP file name extension
to the Oracle JspServlet requires two steps.

The first step is to update the mappings.properties file in the WEB-INF
directory of each servlet context to define JSP file name extensions. Do this with the
following commands:

Map JSP file name extensions (.sqljsp and .SQLJSP are optional).
.jsp=jsp
.JSP=jsp
.sqljsp=jsp
.SQLJSP=jsp

The second step is to update the servlet.properties file in the WEB-INF
directory of each servlet context to define the Oracle JspServlet as the servlet that
begins JSP processing. In addition, be sure to comment out the previously defined
mapping for the JSP reference implementation. Do this as follows:

#jsp.code=com.sun.jsp.runtime.JspServlet (replacing this with Oracle)
jsp.code=oracle.jsp.JspServlet

Tomcat Environment In a Tomcat environment, mapping each JSP file name extension
to the Oracle JspServlet requires a single step. Update the servlet mapping
section of the web.xml file as shown below.

Note: There is a global web.xml file in the
[TOMCAT_HOME]/conf directory. To override any settings in this
file for a particular application, update the web.xml file in the
WEB-INF directory under the particular application root.
A-12 JavaServer Pages Developer’s Guide and Reference

OracleJSP Installation and Web Server Configuration
Map file name extensions (.sqljsp and .SQLJSP are optional).

<servlet-mapping>
 <servlet-name>
 oracle.jsp.JspServlet
 </servlet-name>
 <url-pattern>
 *.jsp
 </url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>
 oracle.jsp.JspServlet
 </servlet-name>
 <url-pattern>
 *.JSP
 </url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>
 oracle.jsp.JspServlet
 </servlet-name>
 <url-pattern>
 *.sqljsp
 </url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>
 oracle.jsp.JspServlet
 </servlet-name>
 <url-pattern>
 *.SQLJSP
 </url-pattern>
</servlet-mapping>

You can optionally set an alias for the oracle.jsp.JspServlet class name, as
follows:

<servlet>
 <servlet-name>
 ojsp
 </servlet-name>
 General Installation and Configuration A-13

OracleJSP Installation and Web Server Configuration
 <servlet-class>
 oracle.jsp.JspServlet
 </servlet-class>
 ...
</servlet>

Setting this alias allows you to use "ojsp" instead of the class name for your other
settings, as follows:

<servlet-mapping>
 <servlet-name>
 ojsp
 </servlet-name>
 <url-pattern>
 *.jsp
 </url-pattern>
</servlet-mapping>

Additional Steps to Run Servlets and JSP Pages in OSE
By default, database users are locked when you install the Oracle database. The
following special users must be unlocked by the database administrator before you
can run servlet, JSP, or EJB applications in the Oracle9i Servlet Engine:

■ AURORAJISUTILITY$

■ OSE$HTTP$ADMIN

■ AURORAORBUNAUTHENTICATED

The ALTER USER command is used for this purpose, as in the following example:

alter user ose$http$admin account unlock;
A-14 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration
OracleJSP Configuration
The OracleJSP front-end servlet, JspServlet, supports a number of configuration
parameters to control OracleJSP operation. They are set as servlet initialization
parameters for JspServlet. How you accomplish this depends on the Web server
and servlet environment you are using.

This section describes the OracleJSP configuration parameters and how to set them
in the most prevalent Web server and servlet environments.

Only a limited number of these parameters are of interest in the Oracle products
that supply OracleJSP, and how to set them may vary from product to product.
Consult the product documentation for more information.

Configuration settings that apply to the Oracle9i Servlet Engine are typically
supported as equivalent options in the OracleJSP pre-translation tool (ojspc). OSE
does not employ the Oracle JspServlet in translating or running JSP pages.

OracleJSP Configuration Parameters (Non-OSE)
This section describes the configuration parameters supported by the Oracle
JspServlet for environments such as Apache/JServ, the Sun Microsystems
JSWDK, or Tomcat. (Note that the Oracle9i Application Server uses an
Apache/JServ environment.)

For the Oracle9i Servlet Engine environment, some of the equivalent configuration
functionality is supported through equivalent ojspc options.

Configuration Parameters Summary Table
Table A–2 summarizes the configuration parameters supported by Oracle
JspServlet (the front-end of the OracleJSP container). For each parameter, the
table notes the following:

■ whether it is used during page translation or page execution

■ whether it is typically of interest in a development environment, deployment
environment, or both

■ any equivalent ojspc translation options for pages that are targeted for the
Oracle9i Servlet Engine (which does not use JspServlet)

OSE does not support execution-time configuration parameters.
 General Installation and Configuration A-15

OracleJSP Configuration
Be aware of the following:

■ The parameters debug_mode and send_error are supported from OracleJSP
release 1.1.2.0 onward.

■ The parameters bypass_source, emit_debuginfo, external_resource,
javaccmd, and sqljcmd are supported from OracleJSP release 1.1.0.0.0
onward.

■ The parameter alias_translation is for use in the Apache/JServ
environment only.

■ The parameter session_sharing is for use with globals.jsa only
(presumably in a servlet 2.0 environment such as Apache/JServ).

Notes:

■ See "The ojspc Pre-Translation Tool" on page 6-26 for a
description of the ojspc options.

■ The distinction between execution-time and translation-time is
not particularly significant in a real-time translation
environment, but may be of interest with respect to OSE.
A-16 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration
Table A–2 OracleJSP Configuration Parameters

Parameter
Related ojspc
Options Description Default

Used in JSP
Translation or
Execution?

Used in
Development
or Deployment
Environment?

alias_translation
(Apache-specific)

n/a boolean; true to work
around Apache/JServ
limitations in directory
aliasing for JSP page
references

false execution development
and deployment

bypass_source n/a boolean; true for OracleJSP
to ignore FileNotFound
exceptions on .jsp source;
uses pre-translated and
compiled code when source
is not available

false execution deployment
(also used by
JDeveloper)

classpath -addclasspath
(related, but
different
functionality)

additional classpath entries
for OracleJSP class loading

null
(no addl.
path)

translation or
execution

development
and deployment

debug_mode n/a boolean; true for OracleJSP
to print the stack trace when
a runtime exception occurs

true execution development

developer_mode n/a boolean; false to not check
timestamps to see if page
retranslation and class
reloading is necessary when
a page is requested

true execution development
and deployment

emit_debuginfo -debug boolean; true to generate a
line map to the original
.jsp file for debugging

false translation development

external_resource -extres boolean; true for OracleJSP
to place all static content of
the page into a separate Java
resource file during
translation

false translation development
and deployment

javaccmd -noCompile Java compiler command
line—javac options, or
alternative Java compiler
run in a separate JVM (null
means use JDK javac with
default options)

null translation development
and deployment
 General Installation and Configuration A-17

OracleJSP Configuration
page_repository_root -srcdir
-d

alternative root directory
(fully qualified path) for
OracleJSP to use in loading
and generating JSP pages

null
(use
default
root)

translation or
execution

development
and deployment

send_error n/a boolean; true to output
standard "404" messages for
file-not-found, "500"
messages for compilation
errors (instead of outputting
customized messages)

false execution deployment

session_sharing
(for use with
globals.jsa)

n/a boolean; for applications
using globals.jsa, true
for JSP session data to be
propagated to underlying
servlet session

true execution development
and deployment

sqljcmd -S SQLJ command line—sqlj
options, or alternative SQLJ
translator run in a separate
JVM (null means use the
Oracle SQLJ version
provided with OracleJSP,
with default option settings)

null translation development
and deployment

translate_params n/a boolean; true to override
servlet containers that do
not perform multibyte
encoding

false execution development
and deployment

unsafe_reload n/a boolean; true to not restart
the application and sessions
whenever a JSP page is
retranslated and reloaded

false execution development

Table A–2 OracleJSP Configuration Parameters (Cont.)

Parameter
Related ojspc
Options Description Default

Used in JSP
Translation or
Execution?

Used in
Development
or Deployment
Environment?
A-18 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration
Configuration Parameter Descriptions
This section describes the OracleJSP configuration parameters in more detail.

alias_translation (boolean; OracleJSP default: false) (Apache-specific)

This parameter allows OracleJSP to work around limitations in the way
Apache/JServ handles directory aliasing. For information about the current
limitations, see "Directory Alias Translation" on page 4-42.

You must set alias_translation to true for httpd.conf directory aliasing
commands, such as the following example, to work properly in the Apache/JServ
servlet environment:

Alias /icons/ "/apache/apache139/icons/"

bypass_source (boolean; OracleJSP default: false)

Normally, when a JSP page is requested, OracleJSP will throw a FileNotFound
exception if it cannot find the corresponding .jsp source file, even if it can find the
page implementation class. (This is because, by default, OracleJSP checks the page
source to see if it has been modified since the page implementation class was
generated.)

Set this parameter to true for OracleJSP to proceed and execute the page
implementation class even if it cannot find the page source.

If bypass_source is enabled, OracleJSP will still check for retranslation if the
source is available and is needed. One of the factors in determining whether it is
needed is the setting of the developer_mode parameter.

Notes:

■ The bypass_source option is useful in deployment
environments that have the generated classes only, not the
source. (For related discussion, see "Deployment of Binary Files
Only" on page 6-75.)

■ Oracle JDeveloper enables bypass_source so that you can
translate and run a JSP page before you have saved the JSP
source to a file.
 General Installation and Configuration A-19

OracleJSP Configuration
classpath (fully qualified path; OracleJSP default: null)

Use this parameter to add classpath entries to the OracleJSP default classpath for
use during translation, compilation, or execution of JSP pages. For information
about the OracleJSP classpath and class loader, see "Classpath and Class Loader
Issues (Non-OSE Only)" on page 4-25.

The exact syntax depends on your Web server environment and operating system.
See "OracleJSP Configuration Parameter Settings" on page A-26 for some examples.

Overall, OracleJSP loads classes from its own classpath (including entries from this
classpath parameter), the system classpath, the Web server classpath, the page
repository, and predefined locations relative to the root directory of the JSP
application.

Be aware that classes loaded through the path specified in the classpath setting
path are loaded by the JSP class loader, not the system class loader. During JSP
execution, classes loaded by the JSP class loader cannot access (or be accessed by)
classes loaded by the system class loader or any other class loader.

debug_mode (boolean; OracleJSP default: true)

Use the default true setting of this flag to direct OracleJSP to print a stack trace
whenever a runtime exception occurs. Set it to false to disable this feature.

developer_mode (boolean; OracleJSP default: true)

Set this flag to false to instruct OracleJSP to not routinely compare the timestamp
of the page implementation class to the timestamp of the .jsp source file when a
page is requested. With developer_mode=true, OracleJSP checks every time to
see if the source has been modified since the page implementation class was
generated. If that is the case, OracleJSP retranslates the page. With

Notes:

■ OracleJSP runtime automatic class reloading applies only to
classes in the OracleJSP classpath. This includes paths specified
through this classpath parameter. (See "Dynamic Class
Reloading" on page 4-30 for information about this feature.)

■ When you pre-translate pages to run in the Oracle9i Servlet
Engine, the ojspc -addclasspath option offers some
related, though different, functionality. See "Option
Descriptions for ojspc" on page 6-30.
A-20 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration
developer_mode=false, OracleJSP will check only upon the initial request for
the page or application. For subsequent requests, it will simply re-execute the
generated page implementation class.

This flag also affects dynamic class reloading for JavaBeans and other support
classes called by a JSP page. With developer_mode=true, OracleJSP checks to see
if such classes have been modified since being loaded by the OracleJSP class loader.

Oracle generally recommends setting developer_mode to false, particularly in a
deployment environment where code is not likely to change and where
performance is a significant issue.

Also see "OracleJSP Runtime Page and Class Reloading (Non-OSE Only)" on
page 4-29.

emit_debuginfo (boolean; OracleJSP default: false) (for developer only)

Set this flag to true to instruct OracleJSP to generate a line map to the original .jsp
file for debugging. Otherwise, lines will be mapped to the generated page
implementation class.

external_resource (boolean; OracleJSP default: false)

Set this flag to true to instruct the OracleJSP translator to place generated static
content (the Java print commands that output static HTML code) into a Java
resource file instead of into the service method of the generated page
implementation class.

The resource file name is based on the JSP page name, with the .res suffix. With
Oracle9i, translation of MyPage.jsp, for example, would create _MyPage.res in
addition to normal output. The exact implementation may change in future releases,
however.

The resource file is placed in the same directory as generated class files.

If there is a lot of static content in a page, this technique will speed translation and
may speed execution of the page. In extreme cases, it may even prevent the service

Notes:

■ Oracle JDeveloper enables emit_debuginfo.

■ When you are pre-translating pages to run in the Oracle9i
Servlet Engine, the ojspc -debug option is equivalent. See
"Option Descriptions for ojspc" on page 6-30.
 General Installation and Configuration A-21

OracleJSP Configuration
method from exceeding the 64K method size limit imposed by the Java VM. For
more information, see "Workarounds for Large Static Content in JSP Pages" on
page 4-16.

javaccmd (compiler executable; OracleJSP default: null)

This parameter is useful in either of the following circumstances:

■ if you want to set javac command-line options (although default settings are
typically sufficient)

■ if you want to use a compiler other than javac (optionally including
command-line options)

Specifying an alternative compiler results in OracleJSP spawning that executable as
a separate process in a separate JVM, instead of spawning the JDK default compiler
within the same JVM in which OracleJSP is running. You can fully specify the path
for the executable, or specify only the executable and let OracleJSP look for it in the
system path.

Following is an example of a javaccmd setting to enable the javac -verbose
option:

javaccmd=javac -verbose

The exact syntax depends on your servlet environment. See "OracleJSP
Configuration Parameter Settings" on page A-26.

Note: When you are pre-translating pages to run in the Oracle9i
Servlet Engine, the ojspc -extres option is equivalent.

The ojspc -hotload option is also relevant, performing the
-extres functionality along with additional steps to allow
hotloading into Oracle9i. See "Option Descriptions for ojspc" on
page 6-30.
A-22 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration
page_repository_root (fully qualified directory path; OracleJSP default: null)

OracleJSP uses the Web server document repository to generate or load translated
JSP pages. By default, in an on-demand translation scenario, the root directory is the
Web server doc root directory (for Apache/JServ) or the servlet context root
directory of the application the page belongs to. JSP page source is in the root
directory or some subdirectory. Generated files are written to a _pages
subdirectory or some corresponding subdirectory.

Set the page_repository_root option to instruct OracleJSP to use a different
root directory.

For information about file locations relative to the root directory and _pages
subdirectory, see "OracleJSP Translator Output File Locations" on page 6-9.

send_error (boolean; OracleJSP default: false)

Set this flag to true to direct OracleJSP to output generic "404" messages for
file-not-found conditions, and generic "500" messages for compilation errors.

Notes:

■ The specified Java compiler must be installed in the classpath
and any front-end utility (if applicable) must be installed in the
system path.

■ When you are pre-translating pages to run in the Oracle9i
Servlet Engine, the ojspc -noCompile option allows similar
functionality. It results in no compilation by javac, so you can
compile the translated classes manually using your desired
compiler. See "Option Descriptions for ojspc" on page 6-30.

Notes:

■ The specified directory, _pages subdirectory, and any
appropriate subdirectories under these are created
automatically if they do not already exist.

■ When you are pre-translating pages to run in the Oracle9i
Servlet Engine, the ojspc options -srcdir and -d provide
related functionality. See "Option Descriptions for ojspc" on
page 6-30.
 General Installation and Configuration A-23

OracleJSP Configuration
This is as opposed to outputting customized messages that provide more
information (such as the name of the file not found). Some environments, such as
Apache/JServ, do not allow output of a customized message if a "404" or "500"
message is output.

session_sharing (boolean; OracleJSP default: true) (for use with globals.jsa)

When a globals.jsa file is used for an application, presumably in a servlet 2.0
environment, each JSP page uses a distinct JSP session wrapper attached to the
single overall servlet session object provided by the servlet container.

In this situation, the default true setting of the session_sharing parameter
results in JSP session data being propagated to the underlying servlet session. This
allows servlets in the application to access the session data of JSP pages in the
application.

If session_sharing is false (which parallels standard behavior in most JSP
implementations), JSP session data is not propagated to the servlet session. As a
result, application servlets would not be able to access JSP session data.

This parameter is meaningless if globals.jsa is not used. For information about
globals.jsa, see "Overview of globals.jsa Functionality" on page 5-38.

sqljcmd (SQLJ translator executable and options; OracleJSP default: null)

This parameter is useful in any of the following circumstances:

■ if you want to set one or more SQLJ command-line options

(You can set multiple SQLJ options in the sqljcmd setting.)

■ if you want to use a different SQLJ translator (or at least a different version)
than the one provided with OracleJSP

■ if you want to run SQLJ in a separate process from OracleJSP

Specifying a SQLJ translator executable results in OracleJSP spawning that
executable as a separate process in a separate JVM, instead of spawning the default
SQLJ translator within the same JVM in which OracleJSP is running.

You can fully specify the path for the executable, or specify only the executable and
let OracleJSP look for it in the system path.

Following is an example of a sqljcmd setting:

sqljcmd=sqlj -user=scott/tiger -ser2class=true
A-24 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration
(The exact syntax depends on your servlet environment. See "OracleJSP
Configuration Parameter Settings" on page A-26.)

translate_params (boolean; OracleJSP default: false)

Set this flag to true to override servlet containers that do not encode multibyte
(globalization support) request parameters or bean property settings. With this
setting, OracleJSP encodes request parameters and bean property settings.
Otherwise, OracleJSP returns the parameters from the servlet container unchanged.

Because the Oracle9i Servlet Engine does not support execution-time configuration
parameters, translate_params cannot be set for the OSE environment. See
"Code Equivalent to the translate_params Configuration Parameter" on page 8-7 for
a workaround.

For more information about the functionality and use of translate_params,
including situations where it should not be used, see "OracleJSP Extended Support
for Multibyte Parameter Encoding" on page 8-5.

Notes:

■ Appropriate SQLJ files must be in the classpath, and any
front-end utility (such as sqlj in the example) must be in the
system path. (For Oracle SQLJ, the translator ZIP or JAR file
and the appropriate SQLJ runtime ZIP or JAR file must be in
the classpath. See "Summary of Files" on page A-4.)

■ Presumably the great majority of OracleJSP developers will use
Oracle SQLJ (as opposed to some other SQLJ product) if they
use SQLJ code in their JSP pages; however, this option is useful
if you want to use a different Oracle SQLJ version (for example,
one intended for use with Oracle JDBC 8.0.x/7.3.x drivers
instead of Oracle9i drivers) or if you want to set SQLJ options.

■ When you are pre-translating pages to run in the Oracle9i
Servlet Engine, the ojspc -S option provides related
functionality. See "Option Descriptions for ojspc" on page 6-30.
 General Installation and Configuration A-25

OracleJSP Configuration
unsafe_reload (boolean; OracleJSP default: false) (for developer only)

By default, OracleJSP restarts the application and sessions whenever a JSP page is
dynamically retranslated and reloaded (which occurs when the JSP translator finds
a .jsp source file with a more recent timestamp than the corresponding page
implementation class).

Set this parameter to true to instruct OracleJSP not to restart the application after
dynamic retranslations and reloads. This avoids having existing sessions become
invalid.

For a given JSP page, this parameter has no effect after the initial request for the
page if developer_mode is set to false (in which case OracleJSP never
retranslates after the initial request).

OracleJSP Configuration Parameter Settings
How to set the JSP configuration parameters discussed in the preceding
section—"OracleJSP Configuration Parameters (Non-OSE)" on page A-15—depends
on your Web server and servlet environment.

Non-Oracle environments support configuration parameter settings through
properties files or similar functionality.

The Oracle9i Servlet Engine, provided with Oracle9i, does not directly support
OracleJSP configuration parameters (because it does not use JspServlet).
However, some of the translation parameter settings have equivalent OracleJSP
translator options. These options are noted in the "Configuration Parameters
Summary Table" on page A-15.

Other Oracle products that support OracleJSP have their own mechanisms for
configuration settings—consult the product documentation.

Note: Beginning with OracleJSP release 1.1.2.x, it is preferable to
use the PublicUtil.setReqCharacterEncoding() method
instead of using the translate_params parameter. See "The
setReqCharacterEncoding() Method" on page 8-5.

Important: This parameter is intended for developers only and is
not recommended for deployment environments.
A-26 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration
The remainder of this section describes how to set configuration parameters in the
Apache/JServ, Sun Microsystems JSWDK, and Tomcat environments.

Setting OracleJSP Parameters in Apache/JServ
Each Web application in an Apache/JServ environment has its own properties file,
known as a zone properties file. In Apache terminology, a zone is essentially the same
as a servlet context.

The name of the zone properties file depends on how you mount the zone. (See the
Apache/JServ documentation for information about zones and mounting.)

To set OracleJSP configuration parameters in an Apache/JServ environment, set the
JspServlet initArgs property in the application zone properties file, as in the
following example (which happens to use UNIX syntax):

servlet.oracle.jsp.JspServlet.initArgs=developer_mode=false,
sqljcmd=sqlj -user=scott/tiger -ser2class=true,classpath=/mydir/myapp.jar

(This is a single wrap-around line.)

The servlet path, servlet.oracle.jsp.JspServlet, also depends on how you
mount the zone. It does not represent a literal directory path.

Be aware of the following:

■ The effects of multiple initArgs commands are cumulative and overriding.
For example, the combination of the following two commands (in order):

servlet.oracle.jsp.JspServlet.initArgs=foo1=val1,foo2=val2
servlet.oracle.jsp.JspServlet.initArgs=foo1=val3

is equivalent to the following single command:

servlet.oracle.jsp.JspServlet.initArgs=foo1=val3,foo2=val2

In the first two commands, the val3 value overrides the val1 value for foo1,
but does not affect the foo2 setting.

■ Because initArgs parameters are comma-separated, there can be no commas
within a parameter setting. Spaces and other special characters (such as "=" in
this example) do not cause a problem, however.
 General Installation and Configuration A-27

OracleJSP Configuration
Setting OracleJSP Parameters in JSWDK
To set OracleJSP configuration parameters in a JSWDK environment, set the
jsp.initparams property in the servlet.properties file in the WEB-INF
directory of the application servlet context, as in the following example (which
happens to use UNIX syntax):

jsp.initparams=developer_mode=false,classpath=/mydir/myapp.jar

Setting OracleJSP Parameters in Tomcat
To set OracleJSP configuration parameters in a Tomcat environment, add
init-param entries in the web.xml file as shown below.

<servlet>
 <init-param>
 <param-name>
 developer_mode
 </param-name>
 <param-value>
 true
 </param-value>
 </init-param>
 <init-param>
 <param-name>
 external_resource
 </param-name>
 <param-value>
 true
 </param-value>
 </init-param>
 <init-param>
 <param-name>

Note: Because initparams parameters are comma-separated,
there can be no commas within a parameter setting. Spaces and
other special characters do not cause a problem, however.

Note: There is a global web.xml file in the
[TOMCAT_HOME]/conf directory. To override any settings in this
file for a particular application, update the web.xml file in the
WEB-INF directory under the particular application root.
A-28 JavaServer Pages Developer’s Guide and Reference

OracleJSP Configuration
 javaccmd
 </param-name>
 <param-value>
 javac -verbose
 </param-value>
 </init-param>
</servlet>

Oracle9i Servlet Engine JSP Configuration
Because the Oracle9i Servlet Engine does not use the OracleJSP JspServlet
front-end, it requires other mechanisms for OracleJSP configuration settings.

Appropriate translation-time configuration parameters have equivalent support
through command-line options of ojspc, which is the utility to pre-translate JSP
pages for the OSE environment. The correlation between OracleJSP configuration
parameters and ojspc options is noted in the table in "Configuration Parameters
Summary Table" on page A-15.

There is no such equivalent support for runtime configuration parameters, however.
The most significant of these is translate_params, required for use in
supporting globalization in servlet environments that do not support multibyte
encoding of request parameters. The Oracle9i Servlet Engine requires this
functionality, but it is left to the developer to write equivalent code in the JSP page.
For details, see "Code Equivalent to the translate_params Configuration Parameter"
on page 8-7.
 General Installation and Configuration A-29

OracleJSP Configuration
A-30 JavaServer Pages Developer’s Guide and Reference

 Servlet and JSP Technical Backgr
B

Servlet and JSP Technical Background

This appendix provides technical background on servlets and JavaServer Pages.
Although this document is written for users who are well grounded in servlet
technology, the servlet information here may be a useful refresher for some.

Standard JavaServer Pages interfaces, implemented automatically by generated JSP
page implementation classes, are briefly discussed as well. Most readers, however,
will not require this information.

The following topics are covered:

■ Background on Servlets

■ Web Application Hierarchy

■ Standard JSP Interfaces and Methods
ound B-1

Background on Servlets
Background on Servlets
Because JSP pages are translated into Java servlets, a brief review of servlet
technology may be helpful. Refer to the Sun Microsystems Java Servlet Specification,
Version 2.2 for more information about the concepts discussed here.

For more information about the methods this section discusses, refer to Sun
Microsystems Javadoc at the following location:

http://java.sun.com/products/servlet/2.2/javadoc/index.html

Review of Servlet Technology
In recent years, servlet technology has emerged as a powerful way to extend Web
server functionality through dynamic HTML pages. A servlet is a Java program that
runs in a Web server (as opposed to an applet, which is a Java program that runs in
a client browser). The servlet takes an HTTP request from a browser, generates
dynamic content (such as by querying a database), and provides an HTTP response
back to the browser.

Prior to servlets, CGI (Common Gateway Interface) technology was used for
dynamic content, with CGI programs being written in languages such as Perl and
being called by a Web application through the Web server. CGI ultimately proved
less than ideal, however, due to its architecture and scalability limitations.

Servlet technology, in addition to improved scalability, offers the well-known Java
advantages of object orientation, platform independence, security, and robustness.
Servlets can use all standard Java APIs, including the JDBC API (for Java database
connectivity, of particular interest to database programmers).

In the Java realm, servlet technology offers advantages over applet technology for
server-intensive applications such as those accessing a database. One advantage is
that a servlet runs in the server, which is usually a robust machine with many
resources, minimizing use of client resources. An applet, by contrast, is downloaded
into the client browser and runs there. Another advantage is more direct access to
the data. The Web server or data server in which a servlet is running is on the same
side of the network firewall as the data being accessed. An applet running on a
client machine, outside the firewall, requires special measures (such as signed
applets) to allow the applet to access any server other than the one from which it
was downloaded.
B-2 JavaServer Pages Developer’s Guide and Reference

Background on Servlets
The Servlet Interface
A Java servlet, by definition, implements the standard javax.servlet.Servlet
interface. This interface specifies methods to initialize a servlet, process requests, get
the configuration and other basic information of a servlet, and terminate a servlet
instance.

For Web applications, the Servlet interface is implemented indirectly by
subclassing the standard javax.servlet.http.HttpServlet abstract class.
The HttpServlet class includes the following methods:

■ init(...) and destroy(...), to initialize and terminate the servlet,
respectively

■ doGet(...), for HTTP GET requests

■ doPost(...), for HTTP POST requests

■ doPut(...), for HTTP PUT requests

■ doDelete(...), for HTTP DELETE requests

■ service(...), to receive HTTP requests and, by default, dispatch them to the
appropriate doXXX() methods

■ getServletInfo(...), which the servlet uses to provide information about
itself

A servlet class that subclasses HttpServlet must implement some of these
methods, as appropriate. Each method takes as input a standard
javax.servlet.http.HttpServletRequest instance and a standard
javax.servlet.http.HttpServletResponse instance.

The HttpServletRequest instance provides information to the servlet regarding
the HTTP request, such as request parameter names and values, the name of the
remote host that made the request, and the name of the server that received the
request. The HttpServletResponse instance provides HTTP-specific
functionality in sending the response, such as specifying the content length and
MIME type and providing the output stream.

Servlet Containers
Servlet containers, sometimes referred to as servlet engines, execute and manage
servlets. A servlet container is usually written in Java and is either part of a Web
server (if the Web server is also written in Java) or otherwise associated with and
used by a Web server.
 Servlet and JSP Technical Background B-3

Background on Servlets
When a servlet is called (such as when a servlet is specified by URL), the Web server
passes the HTTP request to the servlet container. The container, in turn, passes the
request to the servlet. In the course of managing a servlet, a simple container
performs the following:

■ creates an instance of the servlet and calls its init() method to initialize it

■ calls the service() method of the servlet

■ calls the destroy() method of the servlet to discard it when appropriate, so
that it can be garbage collected

For performance reasons, it is typical for a servlet container to keep a servlet
instance in memory for reuse, rather than destroying it each time it has finished
its task. It would be destroyed only for infrequent events, such as Web server
shutdown.

If there is an additional servlet request while a servlet is already running, servlet
container behavior depends on whether the servlet uses a single-thread model or a
multiple-thread model. In a single-thread case, the servlet container prevents
multiple simultaneous service() calls from being dispatched to a single servlet
instance—it may spawn multiple separate servlet instances instead. In a
multiple-thread model, the container can make multiple simultaneous service()
calls to a single servlet instance, using a separate thread for each call, but the servlet
developer is responsible for managing synchronization.

Servlet Sessions
Servlets use HTTP sessions to keep track of which user each HTTP request comes
from, so that a group of requests from a single user can be managed in a stateful
way. Servlet session-tracking is similar in nature to HTTP session-tracking in
previous technologies, such as CGI.

HttpSession Interface
In the standard servlet API, each user is represented by an object that implements
the standard javax.servlet.http.HttpSession interface. Servlets can set and
get information about the session in this HttpSession object, which must be of
application-level scope.

A servlet uses the getSession() method of an HttpServletRequest object
(which represents an HTTP request) to retrieve or create an HttpSession object
for the user. This method takes a boolean argument to specify whether a new
session object should be created for the user if one does not already exist.
B-4 JavaServer Pages Developer’s Guide and Reference

Background on Servlets
The HttpSession interface specifies the following methods to get and set session
information:

■ public void setAttribute(String name, Object value)

This binds the specified object to the session, under the specified name.

■ public Object getAttribute(String name)

This retrieves the object that is bound to the session under the specified name
(or null if there is no match).

Depending on the implementation of the servlet container and the servlet itself,
sessions may expire automatically after a set amount of time or may be invalidated
explicitly by the servlet. Servlets can manage session lifecycle with the following
methods, specified by the HttpSession interface:

■ public boolean invalidate()

This method immediately invalidates the session and unbinds any objects from
it.

■ public boolean setMaxInactiveInterval(int interval)

This method sets a timeout interval, in seconds, as an integer.

■ public boolean isNew()

This method returns true within the request that created the session; it returns
false otherwise.

■ public boolean getCreationTime()

This method returns the time when the session object was created, measured in
milliseconds since midnight, January 1, 1970.

■ public boolean getLastAccessedTime()

This method returns the time of the last request associated with the client,
measured in milliseconds since midnight, January 1, 1970.

Note: Older servlet implementations use putValue() and
getValue() instead of setAttribute() and
getAttribute(), with the same signatures.
 Servlet and JSP Technical Background B-5

Background on Servlets
Session Tracking
The HttpSession interface supports alternative mechanisms for tracking sessions.
Each involves some way to assign a session ID. A session ID is an intermediate
handle that is assigned and used by the servlet container. Multiple sessions by the
same user can share the same session ID, if appropriate.

The following session-tracking mechanisms are supported:

■ cookies

The servlet container sends a cookie to the client, which returns the cookie to
the server upon each HTTP request. This associates the request with the session
ID indicated by the cookie. JSESSIONID must be the name of the cookie.

This is the most frequently used mechanism and is supported by any servlet
container that adheres to the servlet 2.2 specification.

■ URL rewriting

The servlet container appends a session ID to the URL path. The name of the
path parameter must be jsessionid, as in the following example:

http://host[:port]/myapp/index.html;jsessionid=6789

This is the most frequently used mechanism where clients do not accept
cookies.

■ SSL Sessions

SSL (Secure Sockets Layer, used in the HTTPS protocol) includes a mechanism
to take multiple requests from a client and define them as belonging to a single
session. Some servlet containers use the SSL mechanism for their own session
tracking as well.

Servlet Contexts
A servlet context is used to maintain state information for all instances of a Web
application within any single Java virtual machine (that is, for all servlet and JSP
page instances that are part of the Web application). This is similar to the way a
session maintains state information for a single client on the server; however, a
servlet context is not specific to any single user and can handle multiple clients.
There is usually one servlet context for each Web application running within a given
Java virtual machine. You can think of a servlet context as an "application
container".
B-6 JavaServer Pages Developer’s Guide and Reference

Background on Servlets
Any servlet context is an instance of a class that implements the standard
javax.servlet.ServletContext interface, with such a class being provided
with any Web server that supports servlets.

A ServletContext object provides information about the servlet environment
(such as name of the server) and allows sharing of resources between servlets in the
group, within any single JVM. (For servlet containers supporting multiple
simultaneous JVMs, implementation of resource-sharing varies.)

A servlet context maintains the session objects of the users who are running the
application and provides a scope for the running instances of the application.
Through this mechanism, each application is loaded from a distinct class loader and
its runtime objects are distinct from those of any other application. In particular, the
ServletContext object is distinct for an application, as is the HttpSession
object for each user of the application.

As of the Sun Microsystems Java Servlet Specification, Version 2.2, most
implementations can provide multiple servlet contexts within a single host, which is
what allows each Web application to have its own servlet context. (Previous
implementations usually provided only a single servlet context with any given
host.)

The ServletContext interface specifies methods that allow a servlet to
communicate with the servlet container that runs it, which is one of the ways that
the servlet can retrieve application-level environment and state information.

Application Lifecycle Management Through Event Listeners
The Java Servlet Specification, Version 2.1 (and higher) provides limited application
lifecycle management through the standard Java event-listener mechanism. HTTP
session objects can use event listeners to make objects stored in the session object
aware of when they are added or removed. Because the typical reason for removing
objects within a session object is that the session has become invalid, this
mechanism allows the developer to manage session-based resources. Similarly, the
event-listener mechanism also allows the managing of page-based and
request-based resources.

Note: In earlier versions of the servlet specification, the concept of
servlet contexts was not sufficiently defined. Beginning with
version 2.1(b), however, the concept was further clarified and it was
specified that an HTTP session object could not exist across
multiple servlet context objects.
 Servlet and JSP Technical Background B-7

Background on Servlets
Unfortunately, servlet context objects do not support this sort of notification.
Standard servlet application support does not provide a way to manage
application-based resources.

Servlet Invocation
A servlet, like an HTML page, is invoked through a URL. The servlet is launched
according to how servlets are mapped to URLs in the Web server implementation.
Following are the possibilities:

■ A specific URL can be mapped to a specific servlet class.

■ An entire directory can be mapped so that any class in the directory is executed
as a servlet. For example, the special /servlet directory can be mapped so
that any URL of the form /servlet/<servlet_name> executes a servlet.

■ A file name extension can be mapped, so that any URL specifying a file whose
name includes that extension executes a servlet.

This mapping would be specified as part of the Web server configuration.
B-8 JavaServer Pages Developer’s Guide and Reference

Web Application Hierarchy
Web Application Hierarchy
The entities relating to a Web application (which consists of some combination of
servlets and JSP pages) do not follow a simple hierarchy, but can be considered in
the following order:

1. servlet objects (including page implementation objects)

There is a servlet object for each servlet and for each JSP page implementation
in a running application (and possibly more than one object, depending on
whether a single-thread or multiple-thread execution model is used). A servlet
object processes request objects from a client and sends response objects back to
the client. A JSP page, as with servlet code, specifies how to create the response
objects.

You can think of multiple servlet objects as being within a single request object
in some circumstances, such as when one page or servlet "includes" or forwards
to another.

A user will typically access multiple servlet objects in the course of a session,
with the servlet objects being associated with the session object.

Servlet objects, as well as page implementation objects, indirectly implement
the standard javax.servlet.Servlet interface. For servlets in a Web
application, this is accomplished by subclassing the standard
javax.servlet.http.HttpServlet abstract class. For JSP page
implementation classes, this is accomplished by implementing the standard
javax.servlet.jsp.HttpJspPage interface.

2. request and response objects

These objects represent the individual HTTP requests and responses that are
generated as a user runs an application.

A user will typically generate multiple requests and receive multiple responses
in the course of a session. The request and response objects are not "contained
in" the session, but are associated with the session.

As a request comes in from a client, it is mapped to the appropriate servlet
context object (the one associated with the application the client is using)
according to the virtual path of the URL. The virtual path will include the root
path of the application.

A request object implements the standard
javax.servlet.http.HttpServletRequest interface.
 Servlet and JSP Technical Background B-9

Web Application Hierarchy
A response object implements the standard
javax.servlet.http.HttpServletResponse interface.

3. session objects

Session objects store information about the user for a given session and provide
a way to identify a single user across multiple page requests. There is one
session object per user.

There may be multiple users of a servlet or JSP page at any given time, each
represented by their own session object. All these session objects, however, are
maintained by the servlet context that corresponds to the overall application. In
fact, you can think of each session object as representing an instance of the Web
application associated with a common servlet context.

Typically, a session object will sequentially make use of multiple request objects,
response objects, and page or servlet objects, and no other session will use the
same objects; however, the session object does not "contain" those objects per se.

A session lifecycle for a given user starts with the first request from that user. It
ends when the user session terminates (such as when the user quits the
application) or there is a timeout.

HTTP session objects implement the javax.servlet.http.HttpSession
interface.

4. servlet context object

A servlet context object is associated with a particular path in the server. This is
the base path for modules of the application associated with the servlet context,
and is referred to as the application root.

There is a single servlet context object for all sessions of the application in any
given JVM, providing information from the server to the servlets and JSP pages
that comprise the application. The servlet context object also allows application
sessions to share data within a secure environment isolated from other
applications.

The servlet container provides a class that implements the standard
javax.servlet.ServletContext interface, instantiates this class the first
time a user requests an application, and provides this ServletContext object
with the path information for the location of the application.

Note: Prior to the 2.1(b) version of the servlet specification, a
session object could span multiple servlet context objects.
B-10 JavaServer Pages Developer’s Guide and Reference

Web Application Hierarchy
The servlet context object typically has a pool of session objects to represent the
multiple simultaneous users of the application.

A servlet context lifecycle starts with the first request (from any user) for the
corresponding application. The lifecycle ends only when the server is shut
down or otherwise terminated.

(For additional introductory information about servlet contexts, see "Servlet
Contexts" on page B-6.)

5. servlet configuration object

The servlet container uses a servlet configuration object to pass information to a
servlet when it is initialized—the init() method of the Servlet interface
takes a servlet configuration object as input.

The servlet container provides a class that implements the standard
javax.servlet.ServletConfig interface and instantiates it as necessary.
Included within the servlet configuration object is a servlet context object (also
instantiated by the servlet container).
 Servlet and JSP Technical Background B-11

Standard JSP Interfaces and Methods
Standard JSP Interfaces and Methods
Two standard interfaces, both in the javax.servlet.jsp package, are available
to be implemented in code that is generated by a JSP translator:

■ JspPage

■ HttpJspPage

JspPage is a generic interface that is not intended for use with any particular
protocol. It extends the javax.servlet.Servlet interface.

HttpJspPage is an interface for JSP pages using the HTTP protocol. It extends
JspPage and is typically implemented directly and automatically by any servlet
class generated by a JSP translator.

JspPage specifies the following methods used in initializing and terminating
instances of the generated class:

■ jspInit()

■ jspDestroy()

Any code for these methods must be included in scriptlets in your JSP page, as in
the following example:

<%!
 void jspInit()
 {
 ...your implementation code...
 }
%>

(JSP syntax is described later in this chapter. See "Scripting Elements" on page 1-12.)

HttpJspPage adds specification for the following method:

■ _jspService()

Code for this method is typically generated automatically by the translator and
includes the following:

■ code from scriptlets in the JSP page

■ code resulting from any JSP directives

■ any static content of the page.
B-12 JavaServer Pages Developer’s Guide and Reference

Standard JSP Interfaces and Methods
(JSP directives are used to provide information for the page, such as specifying the
Java language for scriptlets and providing package imports. See "Directives" on
page 1-10.)

As with the Servlet methods discussed in "The Servlet Interface" on page B-3, the
_jspService() method takes an HttpServiceRequest instance and an
HttpServiceResponse instance as input.

The JspPage and HttpJspPage interfaces inherit the following methods from the
Servlet interface:

■ init()

■ destroy()

■ service()

■ getServletConfig()

■ getServletInfo()

Refer back to "The Servlet Interface" on page B-3 for a discussion of the Servlet
interface and its key methods.
 Servlet and JSP Technical Background B-13

Standard JSP Interfaces and Methods
B-14 JavaServer Pages Developer’s Guide and Reference

 Compile-Time JML Tag Su
C

Compile-Time JML Tag Support

OracleJSP 1.0.0.6.x releases, because they were JSP 1.0 implementations, could
support JML tags only as Oracle-specific extensions. (The tag library framework
was not added to the JavaServer Pages specification until JSP 1.1.) For those
releases, JML tag processing was built into the OracleJSP translator. This is referred
to as "compile-time JML support".

OracleJSP 1.1.x releases continue to support the compile-time JML implementation;
however, it is generally advisable to use the runtime implementation whenever
possible. The runtime implementation is documented in Chapter 7, "JSP Tag
Libraries and the Oracle JML Tags".

This appendix discusses features of the compile-time implementation that are not in
common with the runtime implementation. This includes the following topics:

■ JML Compile-Time Versus Runtime Considerations and Logistics

■ JML Compile-Time/1.0.0.6.x Syntax Support

■ JML Compile-Time/1.0.0.6.x Tag Support
pport C-1

JML Compile-Time Versus Runtime Considerations and Logistics
JML Compile-Time Versus Runtime Considerations and Logistics
This section discusses two aspects of compile-time tag libraries compared to
runtime tag libraries:

■ general considerations in when it may be advantageous to use a compile-time
tag library implementation (for any library, not just JML)

■ the taglib directive required for the compile-time JML implementation in
particular

General Compile-Time Versus Runtime Considerations
The Sun Microsystems JavaServer Pages Specification, Version 1.1, describes a runtime
support mechanism for custom tag libraries. This mechanism, using an XML-style
tag library description file to specify the tags, is covered in "Standard Tag Library
Framework" on page 7-2.

Creating and using a tag library that adheres to this model assures that the library
will be portable to any standard JSP environment.

There are, however, reasons to consider compile-time implementations:

■ A compile-time implementation may produce more efficient code.

■ A compile-time implementation allows the developer to catch errors during
translation and compilation, instead of the end-user seeing them at runtime.

In the future, Oracle may offer a general framework for creating custom tag libraries
with compile-time tag implementations. Such implementations would depend on
the OracleJSP translator, so would not be portable to other JSP environments.

The general advantages and disadvantages of compile-time implementations apply
to the Oracle JML tag library as well. There may be situations where it is
advantageous to use the compile-time JML implementation as first introduced in
older versions of OracleJSP. There are also a few additional tags in that
implementation, and some additional expression syntax that is supported. (See
"JML Compile-Time/1.0.0.6.x Syntax Support" on page C-4 and "JML
Compile-Time/1.0.0.6.x Tag Support" on page C-7.)

It is generally advisable, however, to use the JML runtime implementation that
adheres to the JSP 1.1 specification.
C-2 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time Versus Runtime Considerations and Logistics
The taglib Directive for Compile-Time JML Support
The OracleJSP 1.0.0.6.x/compile-time JML support implementation uses a custom
class supplied by Oracle, OpenJspRegisterLib, to implement JML tag support.

In a JSP page using JML tags with the compile-time implementation, the taglib
directive must specify the fully qualified name of this class (as opposed to
specifying a TLD file as in standard JSP 1.1 tag library usage).

Following is an example:

<%@ taglib uri="oracle.jsp.parse.OpenJspRegisterLib" prefix="jml" %>

For information about usage of the taglib directive for the JML runtime
implementation, see "The taglib Directive" on page 7-14.
 Compile-Time JML Tag Support C-3

JML Compile-Time/1.0.0.6.x Syntax Support
JML Compile-Time/1.0.0.6.x Syntax Support
This section describes Oracle-specific bean reference syntax and expression syntax
supported by the compile-time JML implementation, for specifying tag attribute
values. The following topics are covered:

■ JML Bean References and Expressions, Compile-Time Implementation

■ Attribute Settings with JML Expressions

This functionality is not portable to other JSP environments.

JML Bean References and Expressions, Compile-Time Implementation
Generally speaking, a bean reference is any reference to a JavaBean instance (bean)
that results in accessing either a property or a method of the bean. This includes a
reference to a property or method of a bean where the bean itself is a property of
another bean.

This becomes cumbersome, because standard JavaBeans syntax requires that
properties be accessed by calling their accessor methods rather than by direct
reference. For example, consider the following direct reference:

a.b.c.d.doIt()

This must be expressed as follows in standard JavaBeans syntax:

a.getB().getC().getD().doIt()

Oracle’s compile-time JML implementation, however, offers abbreviated syntax.

JML Bean References
Oracle-specific syntax supported by the compile-time JML implementation allows
bean references to be expressed using direct dot (".") notation. Note that standard
bean property accessor method syntax is also still valid.

Consider the following standard JavaBean reference:

customer.getName()

In JML bean reference syntax, you can express this in either of the following ways:

customer.getName()

or:

customer.name
C-4 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Syntax Support
JavaBeans can optionally have a default property, whose reference is assumed if no
reference is explicitly stated. Default property names can be omitted in JML bean
references. In the example above, if name is the default property, then the following
are all valid JML bean references:

customer.getName()

or:

customer.name

or simply:

customer

Most JavaBeans do not define a default property. Of those that do, the most
significant are the JML datatype JavaBeans described in "JML Extended Datatypes"
on page 5-2.

JML Expressions
JML expression syntax supported by the compile-time JML implementation is a
superset of standard JSP expression syntax, adding support for the JML bean
reference syntax documented in the preceding section.

A JML bean reference appearing in a JML expression must be enclosed in the
following syntax:

$[JML_bean_reference]

Attribute Settings with JML Expressions
Tag attribute documentation under "JSP Markup Language (JML) Tag Descriptions"
on page 7-30 notes standard syntax that is portable. You can set attributes, as
documented there, for either the runtime or the compile-time JML implementation
and even for non-Oracle JSP environments.

If you intend to use only the Oracle-specific compile-time implementation,
however, you can set attributes using JML bean references and JML expression
syntax, as documented in "JML Bean References and Expressions, Compile-Time
Implementation" above.
 Compile-Time JML Tag Support C-5

JML Compile-Time/1.0.0.6.x Syntax Support
Note the following requirements:

■ Wherever Chapter 7 documents an attribute that accepts either a string literal or
an expression, you can use a JML expression in its $[...] syntax inside
standard JSP <%=...%> syntax.

Consider an example using the JML useVariable tag. You would use syntax
such as the following for the runtime implementation:

<jml:useVariable id = "isValidUser" type = "boolean" value = "<%= dbConn.isValid() %>" scope = "session" />

You can alternatively use syntax such as the following for the compile-time
implementation (the value attribute can be either a string literal or an
expression):

<jml:useVariable id = "isValidUser" type = "boolean" value = "<%= $[dbConn.valid] %>" scope = "session" />

■ Wherever Chapter 7 documents an attribute that accepts an expression only,
you can use a JML expression in its $[...] syntax without being nested in
<%=...%> syntax.

Consider an example using JML choose...when tags. You would use
something such as the following syntax for the runtime implementation
(presume orderedItem is a JmlBoolean instance):

<jml:choose>
 <jml:when condition = "<%= orderedItem.getValue() %>" >
 You have changed your order:
 -- outputs the current order --
 </jml:when>
 <jml:otherwise>
 Are you sure we can’t interest you in something?
 </jml:otherwise>
</jml:choose>

You can alternatively use syntax such as the following for the compile-time
implementation (the condition attribute can be an expression only):

<jml:choose>
 <jml:when condition = "$[orderedItem]" >
 You have changed your order:
 -- outputs the current order --
 </jml:when>
 <jml:otherwise>
 Are you sure we can’t interest you in something?
 </jml:otherwise>
</jml:choose>
C-6 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Tag Support
JML Compile-Time/1.0.0.6.x Tag Support
This section presents the following:

■ a summary of all compile-time tags, noting which are desupported in the
runtime implementation

■ a description of tags supported by the compile-time implementation that are
desupported in the runtime implementation

These tags are not documented in "JSP Markup Language (JML) Tag
Descriptions" on page 7-30.

JML Tag Summary, 1.0.0.6.x/Compile-Time Versus 1.1.x.x/Runtime
Most JML tags are available in both the runtime model and the compile-time model;
however, there are exceptions, as summarized in Table C–1.

Note: In most cases, JML tags that are desupported in the runtime
implementation have standard JSP equivalents. Some of the
compile-time tags, however, were desupported because they have
functionality that is difficult to implement when adhering to the JSP
1.1 specification.

Table C–1 JML Tags Supported: Compile-Time Model Versus Runtime Model

Tag
Supported in OracleJSP
Compile-Time Implementation?

Supported in OracleJSP
Runtime Implementation?

Bean Binding Tags:

useBean yes no; use jsp:useBean

useVariable yes yes

useForm yes yes

useCookie yes yes

remove yes yes

Bean Manipulation Tags

getProperty yes no; use jsp:getProperty

setProperty yes no; use jsp:setProperty

set yes no
 Compile-Time JML Tag Support C-7

JML Compile-Time/1.0.0.6.x Tag Support
Descriptions of Additional JML Tags, Compile-Time Implementation
This section provides detailed descriptions of JML tags that are still supported by
the JML compile-time implementation, but are not supported by the JML runtime
implementation. These tags are not documented under "JSP Markup Language
(JML) Tag Descriptions" on page 7-30.

In summary, this consists of the following JML tags.

■ JML useBean Tag

■ JML getProperty Tag

■ JML setProperty Tag

call yes no

lock yes no

Control Flow Tags

if yes yes

choose yes yes

for yes yes

foreach yes; type attribute is optional yes; type attribute is required

return yes yes

flush yes yes

include yes no; use jsp:include

forward yes no; use jsp:forward

XML Tags

transform yes yes

styleSheet yes yes

Utility Tags

print yes; use double-quotes to specify a
string literal

no; use JSP expressions

plugin yes no; use jsp:plugin

Table C–1 JML Tags Supported: Compile-Time Model Versus Runtime Model (Cont.)

Tag
Supported in OracleJSP
Compile-Time Implementation?

Supported in OracleJSP
Runtime Implementation?
C-8 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Tag Support
■ JML set Tag

■ JML call Tag

■ JML lock Tag

■ JML include Tag

■ JML forward Tag

■ JML print Tag

■ JML plugin Tag

For the syntax documentation in the tag descriptions, note the following:

■ Italics indicate you must specify a value or string.

■ Optional attributes are enclosed in square brackets: [...]

■ Default values of optional attributes are indicated in bold.

■ Choices in how to specify an attribute are separated by vertical bars: |

■ The prefix "jml:" is used. This is by convention, but is not required. You can
specify any desired prefix in your taglib directive.

JML useBean Tag
This tag declares an object to be used in the page, locating the previously
instantiated object at the specified scope by name if it exists. If it does not exist, the
tag will create a new instance of the appropriate class and attach it to the specified
scope by name.

The syntax and semantics are the same as for the standard jsp:useBean tag,
except that wherever a JSP expression is valid in jsp:useBean usage, either a JML
expression or a JSP expression is valid in JML useBean usage.

Syntax

<jml:useBean id = "beanInstanceName"
 scope ="page | request | session | application"
 class ="package.class" | type = "package.class" |
 class ="package.class" type = "package.class" |
 beanName = "package.class | <%= jmlExpression %>"
 type = "package.class" />

Alternatively, you can have additional nested tags, such as setProperty tags, and
use a </jml:useBean> end tag.
 Compile-Time JML Tag Support C-9

JML Compile-Time/1.0.0.6.x Tag Support
Attributes

Refer to the Sun Microsystems JavaServer Pages Specification, Version 1.1 for
information about attributes and their syntax.

Example

<jml:useBean id = "isValidUser" class = "oracle.jsp.jml.JmlBoolean" scope = "session" />

JML getProperty Tag
This tag is functionally identical to the standard jsp:getProperty tag. It prints
the value of the bean property into the response.

For general information about getProperty usage, refer to "JSP Actions and the
<jsp: > Tag Set" on page 1-18 or to the Sun Microsystems JavaServer Pages
Specification, Version 1.1.

Syntax

<jml:getProperty name = "beanInstanceName" property = "propertyName" />

Attributes

■ name—This is the name of the bean whose property is being retrieved. This
attribute is required.

■ property—This is the name of the property being retrieved. This attribute is
required.

Example The following example outputs the current value of the salary property.
(Assume salary is of type JmlNumber.)

<jml:getProperty name="salary" property="value" />

This is equivalent to the following:

<%= salary.getValue() %>

JML setProperty Tag
This tag covers the functionality supported by the standard jsp:setProperty
tag, but also adds functionality to support JML expressions. In particular, you can
use JML bean references.
C-10 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Tag Support
For general information about setProperty usage, refer to "JSP Actions and the
<jsp: > Tag Set" on page 1-18 or to the Sun Microsystems JavaServer Pages
Specification, Version 1.1.

Syntax

<jml:setProperty name = "beanInstanceName"
 property = " * " |
 property = "propertyName" [param = "parameterName"] |
 property = "propertyName"
 value = "stringLiteral | <%= jmlExpression %>" />

Attributes

■ name—This is the name of the bean whose property is being set. This attribute
is required.

■ property—This is the name of the property being set. This attribute is
required.

■ value—This is an optional parameter that lets you set the value directly
instead of from a request parameter. The JML setProperty tag supports JML
expressions in addition to standard JSP expressions to specify the value.

Example The following example updates salary with a six percent raise. (Assume
salary is of type JmlNumber.)

<jml:setProperty name="salary" property="value" value="<%= $[salary] * 1.06 %>" />

This is equivalent to the following:

<% salary.setValue(salary.getValue() * 1.06); %>

JML set Tag
This tag provides an alternative for setting a bean property, using syntax that is
more convenient than that of the setProperty tag.

Syntax

<jml:set name = "beanInstanceName.propertyName"
 value = "stringLiteral | <%= jmlExpression %>" />
 Compile-Time JML Tag Support C-11

JML Compile-Time/1.0.0.6.x Tag Support
Attributes

■ name—This is a direct reference (JML bean reference) to the bean property to be
set. This attribute is required.

■ value—This is the new property value. It is expressed either as a string literal,
a JML expression, or a standard JSP expression. This attribute is required.

Example Each of the following examples updates salary with a six percent raise.
(Assume salary is of type JmlNumber.)

<jml:set name="salary.value" value="<%= salary.getValue() * 1.06 %>" />

or:

<jml:set name="salary.value" value="<%= $[salary.value] * 1.06 %>" />

or:

<jml:set name="salary" value="<%= $[salary] * 1.06 %>" />

These are equivalent to the following:

<% salary.setValue(salary.getValue() * 1.06); %>

JML call Tag
This tag provides a mechanism to invoke bean methods that return nothing.

Syntax

<jml:call method = "beanInstanceName.methodName(parameters)" />

Attributes

■ method—This is the method call as you would write it in a scriptlet, except that
the beanInstancename.methodName portion of the statement can be written
as a JML bean reference if enclosed in JML expression $[...] syntax. This
attribute is required.

Example The following example redirects the client to a different page:

<jml:call name=’response.sendRedirect("http://www.oracle.com/")’ />
C-12 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Tag Support
This is equivalent to the following:

<% response.sendRedirect("http://www.oracle.com/"); %>

JML lock Tag
This tag allows controlled, synchronous access to the named object for any code that
uses it within the tag body.

Generally, JSP developers need not be concerned with concurrency issues. However,
because application-scoped objects are shared across all users running the
application, access to critical data must be controlled and coordinated.

 You can use the JML lock tag to prevent concurrent updates by different users.

Syntax

<jml:lock name = "beanInstanceName" >
 ...body...
</jml:lock>

Attributes

■ name—This is the name of the object that should be locked during execution of
code in the lock tag body. This is a required attribute.

Example In the following example, pageCount is an application-scoped
JmlNumber value. The variable is locked to prevent the value from being updated
by another user between the time this code gets the current value and the time it
sets the new value.

<jml:lock name="pageCount" >
 <jml:set name="pageCount.value" value="<%= pageCount.getValue() + 1 %>" />
</jml:lock>

This is equivalent to the following:

<% synchronized(pageCount)
 {
 pageCount.setValue(pageCount.getValue() + 1);
 }
%>
 Compile-Time JML Tag Support C-13

JML Compile-Time/1.0.0.6.x Tag Support
JML include Tag
This tag includes the output of another JSP page, a servlet, or an HTML page in the
response of this page (the page invoking the include). It provides the same
functionality as the standard jsp:include tag except that the page attribute can
also be expressed as a JML expression.

For general information about include usage, refer to "JSP Actions and the <jsp: >
Tag Set" on page 1-18 or to the Sun Microsystems JavaServer Pages Specification,
Version 1.1.

Syntax

<jml:include page = "relativeURL | <%= jmlExpression %>" flush = "true" />

Attributes

For general information about include attributes and usage, refer to the Sun
Microsystems JavaServer Pages Specification, Version 1.1.

Example The following example includes the output of table.jsp, a presentation
component that renders an HTML table, based on data in the query string and
request attributes.

<jml:include page="table.jsp?maxRows=10" flush="true" />

JML forward Tag
This tag forwards the request to another JSP page, a servlet, or an HTML page. It
provides the same functionality as the standard jsp:forward tag except that the
page attribute can also be expressed as a JML expression.

For general information about forward usage, refer to "JSP Actions and the <jsp: >
Tag Set" on page 1-18 or to the Sun Microsystems JavaServer Pages Specification,
Version 1.1.

Syntax

<jml:forward page = "relativeURL | <%= jmlExpression %>" />
C-14 JavaServer Pages Developer’s Guide and Reference

JML Compile-Time/1.0.0.6.x Tag Support
Attributes

For general information about forward attributes and usage, refer to the Sun
Microsystems JavaServer Pages Specification, Version 1.1.

Example

<jml:forward page="altpage.jsp" />

JML print Tag
This tag provides essentially the same functionality as a standard JSP expression:
<%= expr %>. A specified JML expression or string literal is evaluated, and the
result is output into the response. With this tag, the JML expression does not have to
be enclosed in <%= ... %> syntax; however, a string literal must be enclosed in
double-quotes.

Syntax

<jml:print eval = ’" stringLiteral"’ | " jmlExpression" />

Attributes

eval—Specifies the string or expression to be evaluated and output. This attribute
is required.

Examples Either of the following examples outputs the current value of salary,
which is of type JmlNumber:

<jml:print eval="$[salary]"/>

or:

<jml:print eval="salary.getValue()" />

The following example prints a string literal:

<jml:print eval=’"Your string here"’ />
 Compile-Time JML Tag Support C-15

JML Compile-Time/1.0.0.6.x Tag Support
JML plugin Tag
This tag has functionality identical to that of the standard jsp:plugin tag.

For general information about plugin usage, refer to "JSP Actions and the <jsp: >
Tag Set" on page 1-18 or to the Sun Microsystems JavaServer Pages Specification,
Version 1.1.
C-16 JavaServer Pages Developer’s Guide and Reference

Index

Symbols
_jspService() method, B-12

A
action tags

forward tag, 1-21
getProperty tag, 1-19
include tag, 1-20
overview, 1-18
param tag, 1-20
plugin tag, 1-22
setProperty tag, 1-18
useBean tag, 1-18

addclasspath, ojspc option, 6-30
alias translation, Apache/JServ

alias_translation configuration parameter, A-19
overview, 4-42

Apache/JServ
Apache "mods", 2-6
classpath configuration, A-8
config, map file name extensions, A-11
mod_jserv module, 2-7
mod_ose module, 2-7
OracleJSP application framework, 4-41
OracleJSP dynamic include support, 4-39
overview of JSP-servlet session sharing, 4-42
overview of special considerations, 4-38
setting configuration parameters, A-27
support for OracleJSP, 2-11
use with Oracle9i Application Server, 4-38

application events
servlet application lifecycles, B-7

with globals.jsa, 5-43
with JspScopeListener, 5-33

application framework for Apache/JServ, 4-41
application hierarchy, B-9
application object (implicit), 1-16
application root functionality, 3-4
application scope (JSP objects), 1-15
application support

overview, 3-6
servlet application lifecycles, B-7
through globals.jsa, 5-39

application_OnEnd tag, globals.jsa, 5-44
application_OnStart tag, globals.jsa, 5-43
application-relative path, 1-9
appRoot, ojspc option, 6-31

B
batch updates--see update batching
bean references, compile-time JML, C-4
binary data, reasons to avoid in JSP, 4-22
binary file deployment, 6-75
binary file location, ojspc d option, 6-32
bypass_source config param, A-19

C
call servlet from JSP, JSP from servlet, 3-7
call tag, compile-time JML, C-12
checker pages, 4-15
choose tag, JML, 7-35
class loader issues, 4-25
class naming, translator, 6-6
class reloading, dynamic, 4-30
 Index-1

classesXX.zip, required file for JDBC, A-5
classpath

classpath and class loader issues, 4-25
classpath config param, A-20
configuration, Apache/JServ, A-8
configuration, JSWDK, A-10
configuration, Tomcat, A-10
Web server classpath configuration, A-8

client-side considerations, 3-3
client-side translation, Oracle9i deployment

hotloading page implementation classes, 6-68
loading translated pages, 6-64
overview, 6-59
pre-translating with ojspc, 6-59
publishing pages with publishservlet, 6-69
vs. server-side translation, 6-22

code, generated by translator, 6-3
comments (in JSP code), 1-14
compilation

javaccmd config param, A-22
ojspc noCompile option, 6-35

compile-time JML tags
syntax support, C-4
tag summary and descriptions, C-7
taglib directive, C-3

config object (implicit), 1-17
configuration

classpath and class loader issues, 4-25
classpath, Apache/JServ, A-8
classpath, JSWDK, A-10
classpath, Tomcat, A-10
config param descriptions (non-OSE), A-19
config params, summary table (non-OSE), A-15
equivalent code for config params, OSE, 4-37
map file name extensions, Apache/JServ, A-11
map file name extensions, JSWDK, A-12
map file name extensions, Tomcat, A-12
map JSP file name extensions, A-11
optimization of execution, 4-24
overview, OSE configuration, A-29
setting configuration parameters, A-26
setting parameters, Apache/JServ, A-27
setting parameters, JSWDK, A-28
setting parameters, Tomcat, A-28
Web server and servlet environment, A-7

Web server classpath, A-8
configuration parameters (non-OSE)

setting, A-26
summary table and descriptions, A-15

ConnBean JavaBean
sample application, 9-25
usage (for connection), 5-14

ConnCacheBean JavaBean
sample application, 9-28
usage (for connection cache), 5-16

connection caching
overview, 4-9
sample applications, 9-18
through ConnCacheBean JavaBean, 5-16

connection, server-side (for OSE), 4-33
containers

JSP containers, 1-7
OSE JSP container, 2-22
servlet containers, B-3

content type settings
dynamic (setContentType method), 8-4
static (page directive), 8-2

context path, URLs, 6-17
context, publishjsp option, 6-48
context-relative path, 1-9
cookies, B-6
createcontext command, 6-17, 6-20, 6-21, 6-48
CursorBean JavaBean

sample application, 9-26
usage (for DML), 5-20

custom tags--see tag libraries

D
d, ojspc option (binary output dir), 6-32
data access

data-access JavaBeans, 5-13
server-side JDBC connection, 4-33
starter sample, 3-21
strategies, 2-8

data-access JavaBeans
ConnBean for connection, 5-14
ConnCacheBean for connection cache, 5-16
CursorBean for DML, 5-20
DBBean for queries, 5-19
Index-2

overview, 5-13
sample applications, 9-23

database schema objects--see schema objects
datatypes

JML datatypes example, 5-7
JmlBoolean extended type, 5-3
JmlFPNumber extended type, 5-5
JmlNumber extended type, 5-4
JmlString extended type, 5-6
Oracle JML extended types, 5-2
overview of OracleJSP extensions, 2-12

DBBean JavaBean
sample application, 9-23
usage (for queries), 5-19

dbClose SQL tag, close connection, 5-26
dbCloseQuery SQL tag, close cursor, 5-27
dbExecute SQL tag, DML/DDL, 5-28
dbNextRow SQL tag, process results, 5-28
dbOpen SQL tag, open connection, 5-25
dbQuery SQL tag, execute query, 5-26
debugging

debug, ojspc option, 6-33
debug_mode config param, A-20
emit_debuginfo config param, A-21
through JDeveloper, 2-23

declarations
global declarations, globals.jsa, 5-48
member variables, 1-12
method variable vs. member variable, 4-18

deployment environment, 3-2
deployment to Oracle9i

ojspc pre-translation tool, 6-26
overview of hotloading, 6-24
overview of loadjava tool, 6-40
overview of session shell tool, 6-42
overview of tools, 6-26
overview, features and logistics, 6-14
server-side vs. client-side translation, 6-22
static file location, 6-20
with client-side translation, 6-59
with server-side translation, 6-45

deployment, general considerations
deploying pages with JDeveloper, 6-79
deployment of binary files only, 6-75
doc root, iAS vs. OSE, 6-73

general pre-translation without execution, 6-75
ojspc for non-OSE environments, 6-74
overview, 6-73
WAR deployment, 6-77

developer_mode config param, A-20
development environment, 3-2
directives

global directives, globals.jsa, 5-48
include directive, 1-11
overview, 1-10
page directive, 1-10
taglib directive, 1-11

directory alias translation--see alias translation
doc root

functionality, 3-4
iAS vs. OSE, 6-73

dynamic class reloading, 4-30
dynamic forward, special support for

Apache/JServ, 4-39
dynamic include

action tag, 1-20
for large static content, 4-16
logistics, 4-13
special support for Apache/JServ, 4-39
vs. static include, 4-12

dynamic page reloading, 4-29
dynamic page retranslation, 4-29

E
EJBs, calling from JSPs

from the middle tier, 4-3
from the Oracle9i Servlet Engine, 4-5
overview, 4-3
through a Java, 4-6
through a JavaBean wrapper, 4-6

emit_debuginfo config param, A-21
Enterprise JavaBeans--see EJBs
environments, development vs. deployment, 3-2
error processing

at runtime, 3-18
send_error config param, A-23

event handling
servlet application lifecycles, B-7
with globals.jsa, 5-43
 Index-3

with HttpSessionBindingListener, 3-12
with JspScopeListener, 5-33

exception object (implicit), 1-17
execution models for OracleJSP, 2-21
execution of a JSP page, 1-7
explicit JSP objects, 1-15
expressions, 1-12
extend, ojspc option, 6-33
extend, publishjsp option, 6-51
extensions

extended functionality for servlet 2.0, 2-2
overview of data-access JavaBeans, 2-13
overview of extended datatypes, 2-12
overview of extended globalization

support, 2-15
overview of globals.jsa (application

support), 2-16
overview of JML tag library, 2-14
overview of JspScopeListener, 2-16
overview of Oracle-specific extensions, 2-15
overview of PL/SQL Server Pages support, 2-16
overview of portable extensions, 2-12
overview of programmatic extensions, 2-12
overview of SQL tag library, 2-14
overview of SQLJ support, 2-15
overview of XML/XSL support, 2-13

external resource file
for static text, 4-17
through external_resource parameter, A-21
through ojspc extres option, 6-33

external_resource config param, A-21
extres, ojspc option, 6-33

F
fallback tag (with plugin tag), 1-23
Feiner, Amy (welcome), 1-3
file name extensions, mapping, A-11
files

generated by translator, 6-7
installation for non-Oracle environments, A-6
locations, ojspc d option, 6-32
locations, ojspc srcdir option, 6-37
locations, page_repository_root config

param, A-23

locations, translator output, 6-9
OracleJSP required files, A-4

flush tag, JML, 7-39
for tag, JML, 7-36
foreach tag, JML, 7-37
forward tag, 1-21
forward tag, compile-time JML, C-14
full names, schema objects, 6-15

G
generated code, by translator, 6-3
generated output names, by translator, 6-4
getProperty tag, 1-19
getProperty tag, compile-time JML, C-10
globalization support

content type settings (dynamic), 8-4
content type settings (static), 8-2
multibyte parameter encoding, 8-5
overview, 8-1
sample depending on translate_params, 8-8
sample not depending on

translate_params, 8-10
globals.jsa

application and session lifecycles, 5-40
application deployment, 5-39
application events, 5-43
distinct applications and sessions, 5-39
event handling, 5-43
example, declarations and directives, 5-49
extended support for servlet 2.0, 5-38
file contents, structure, 5-49
global declarations, 5-48
global JavaBeans, 5-48
global JSP directives, 5-48
overview of functionality, 5-38
overview of syntax and semantics, 5-40
sample application, application and session

events, 9-46
sample application, application events, 9-43
sample application, global declarations, 9-49
sample applications, 9-43
session events, 5-45
Index-4

H
hotload, ojspc option, 6-34
hotload, publishjsp option, 6-50
hotloading (for OSE)

enabling and accomplishing, 6-24
enabling through ojspc, 6-61
features and advantages, 6-25
hotloading page implementation classes, 6-68
ojspc hotload option, 6-34
overview, 6-24
publishjsp hotload option, 6-50

HttpJspPage interface, B-12
HttpSession interface, B-4
HttpSessionBindingListener, 3-12

I
if tag, JML, 7-34
implement, ojspc option, 6-34
implement, publishjsp option, 6-51
implicit JSP objects

overview, 1-15
using implicit objects, 1-17

include directive, 1-11
include tag, 1-20
include tag, compile-time JML, C-14
inner class for static text, 6-3
installation of files, non-Oracle environment, A-6
interaction, JSP-servlet, 3-7
Internet Application Server--see Oracle9i

Application Server
invoke servlet from JSP, JSP from servlet, 3-7

J
java command (session shell), 6-68
JavaBeans

bean references, compile-time JML, C-4
data-access JavaBean samples, 9-23
global JavaBeans, globals.jsa, 5-48
JML bean binding tags, 7-30
Oracle data-access beans, 5-13
query bean sample application, 9-15
use for separation of business logic, 1-5
use with useBean tag, 1-18

useBean sample application, 9-3
vs. scriptlets, 4-2

javaccmd config param, A-22
JDBC in JSP pages

performance enhancements, 4-9
required files, A-5
sample applications, 9-12
server-side internal driver (for OSE), 4-33

JDeveloper
OracleJSP support, 2-23
use for deploying JSP pages, 6-79

jml call tag, compile-time JML, C-12
jml choose tag, 7-35
JML datatypes

descriptions, 5-2
example, 5-7

JML expressions, compile-time JML
attribute settings, C-5
syntax, C-5

jml flush tag, 7-39
jml for tag, 7-36
jml foreach tag, 7-37
jml forward tag, compile-time JML, C-14
jml getProperty tag, compile-time JML, C-10
jml if tag, 7-34
jml include tag, compile-time JML, C-14
jml lock tag, compile-time JML, C-13
jml otherwise tag, 7-35
jml plugin tag, compile-time JML, C-16
jml print tag, C-15
jml remove tag, 7-33
jml return tag, 7-38
jml set tag, compile-time JML, C-11
jml setProperty tag, compile-time JML, C-10
jml styleSheet tag, 5-10
JML tags

attribute settings, compile-time JML, C-5
bean references, compile-time JML, C-4
descriptions, additional compile-time tags, C-8
descriptions, bean binding tags, 7-30
descriptions, logic/flow control tags, 7-34
descriptions, XSL stylesheet tags, 5-10
expressions, compile-time JML, C-5
overview, 7-20
philosophy, 7-21
 Index-5

requirements, 7-20
sample application, 9-31
summary of tags, categories, 7-21
summary, compile-time vs. runtime, C-7
tag descriptions, symbology and notes, 7-30
tag library description file, 7-22
taglib directive, 7-22
taglib directive, compile-time JML, C-3

jml transform tag, 5-10
jml useBean tag, compile-time JML, C-9
jml useCookie tag, 7-32
jml useForm tag, 7-31
jml useVariable tag, 7-30
jml when tag, 7-35
JmlBoolean extended datatype, 5-3
JmlFPNumber extended datatype, 5-5
JmlNumber extended datatype, 5-4
JmlString extended datatype, 5-6
JNDI in Oracle9i Servlet Engine, 4-36
jsp fallback tag (with plugin tag), 1-23
jsp forward tag, 1-21
jsp getProperty tag, 1-19
jsp include tag, 1-20
JSP Markup Language--see JML
jsp param tag, 1-20
jsp plugin tag, 1-22
jsp setProperty tag, 1-18
JSP translator--see translator
jsp useBean tag

sample application, 9-3
syntax, 1-18

JspPage interface, B-12
JspScopeEvent class, event handling, 5-33
JspScopeListener

sample application, 9-34
usage for event handling, 5-33

jspService() method, B-12
JSP-servlet interaction

invoking JSP from servlet, request
dispatcher, 3-8

invoking servlet from JSP, 3-7
passing data, JSP to servlet, 3-8
passing data, servlet to JSP, 3-9
sample code, 3-10

JSWDK

classpath configuration, A-10
config, map file name extensions, A-12
setting configuration parameters, A-28
support for OracleJSP, 2-11

L
loadjava tool (load to Oracle9i)

complete option syntax, 6-40
loading translated pages, 6-64
loading translated pages as class files, 6-64
loading translated pages as source files, 6-66
loading untranslated pages, 6-45
overview, 6-40

lock tag, compile-time JML, C-13

M
mapping JSP file name extensions, A-11
member variable declarations, 4-18
method variable declarations, 4-18
multibyte parameter encoding, globalization

support, 8-5

N
National Language Support--see Globalization

Support
NLS--see Globalization Support
noCompile, ojspc option, 6-35

O
objects and scopes (JSP objects), 1-14
ojspc pre-translation tool

command-line syntax, 6-30
enabling hotloading, 6-61
examples, 6-62
for SQLJSP pages, 6-60
key features and options, 6-61
option descriptions, 6-30
option summary table, 6-28
output files, locations, related options, 6-38
overview, 6-26
overview of functionality, 6-27
Index-6

pre-translating for deployment to Oracle9i, 6-59
simplest usage, 6-60
use for non-OSE environments, 6-74

ojsp.jar, required file, A-4
ojsputil.jar, optional file, A-4
on-demand translation (runtime), 1-7, 2-21
optimization

not checking for retranslation, 4-24
not using HTTP session, 4-25
unbuffering a JSP page, 4-24

Oracle Application Server, OracleJSP support, 2-9
Oracle HTTP Server

advantages in using, 2-9
role with OracleJSP, 2-6
with mod_jserv, 2-7
with mod_ose, 2-7

Oracle JVM, 4-33
Oracle platforms supporting OracleJSP

JDeveloper, 2-23
Oracle Application Server, 2-9
Oracle9i Application Server, 2-5
summary of releases, 2-18
Web-to-go, 2-10

Oracle Servlet Engine--see Oracle9i Servlet Engine
Oracle9i Application Server

OracleJSP support, 2-5
use of Apache/JServ, 4-38

Oracle9i Servlet Engine
calling EJBs from JSPs in OSE, 4-5
config parameters, equivalent code, 4-37
configuration overview, A-29
doc root, vs. iAS, 6-73
JSP integration with PL/SQL Pages, 2-16
OSE JSP container, 2-22
overview, 2-4
overview of pre-translation model, 2-22
overview of special considerations, 4-32
server-side JDBC connection, 4-33
static files, 6-20
URLs, 6-17
use of JNDI, 4-36
virtual paths, 6-17

OracleJSP translator--see translator
otherwise tag, JML, 7-35
out object (implicit), 1-17

output files
generated by translator, 6-7
locations, 6-9
locations and related options, ojspc, 6-38
ojspc d option (binary location), 6-32
ojspc srcdir option (source location), 6-37
page_repository_root config param, A-23

output names, conventions, 6-4

P
package naming

by translator, 6-6
ojspc packageName option, 6-35
publishjsp packageName option, 6-49

packageName, ojspc option, 6-35
packageName, publishjsp option, 6-49
page directive

characteristics, 4-19
contentType setting for globalization

support, 8-2
overview, 1-10

page events (JspScopeListener), 5-33
page implementation class

generated code, 6-3
overview, 1-7
sample code, 6-9

page object (implicit), 1-16
page reloading, dynamic, 4-29
page retranslation, dynamic, 4-29
page scope (JSP objects), 1-15
page_repository_root config param, A-23
pageContext object (implicit), 1-16
page-relative path, 1-9
param tag, 1-20
PL/SQL Server Pages, use with OracleJSP, 2-16
plugin tag, 1-22
plugin tag, compile-time JML, C-16
portability of OracleJSP, 2-2
prefetching rows--see row prefetching
pre-translation

client-side (for OSE), 6-59
for OSE (overview), 2-22
server-side (for OSE), 6-46
without execution, general, 6-75
 Index-7

pre-translation for deployment to Oracle9i, 6-59
pre-translation tool, ojspc, 6-26
print tag, JML, C-15
properties, publishservlet option, 6-71
PSP pages, use with OracleJSP, 2-16
publishjsp command

examples, 6-51
overview, 6-46
publishing SQLJSP pages, 6-55
syntax and options, 6-47

publishservlet command
example, 6-71
overview, 6-69
syntax and options, 6-69

R
release number, OracleJSP, code to display, 2-19
reloading classes, dynamic, 4-30
reloading page, dynamic, 4-29
remove tag, JML, 7-33
request dispatcher (JSP-servlet interaction), 3-8
request events (JspScopeListener), 5-33
request object (implicit), 1-16
request objects, servlets, B-9
request scope (JSP objects), 1-15
RequestDispatcher interface, 3-8
requesting a JSP page, 1-8
requirements

summary of required files, A-4
system requirements for OracleJSP, A-2

resolver, publishjsp option, 6-51
resource management

application (JspScopeListener), 5-33
overview of OracleJSP extensions, 3-17
page (JspScopeListener), 5-33
request (JspScopeListener), 5-33
session (JspScopeListener), 5-33
standard session management, 3-12

response object (implicit), 1-16
response objects, servlets, B-9
retranslation of page, dynamic, 4-29
return tag, JML, 7-38
reuse, publishservlet option, 6-70
row prefetching

overview, 4-11
through OracleJSP ConnBean, 5-14

rowset caching, 4-12
runtime considerations

dynamic class reloading, 4-30
dynamic page reloading, 4-29
dynamic page retranslation, 4-29

runtimeXX.zip, required file for SQLJ, A-5

S
S, ojspc option (for SQLJ options), 6-35
sample applications

basic samples, 9-2
ConnBean sample, 9-25
ConnCacheBean sample, 9-28
connection caching pages, 9-18
CursorBean sample, 9-26
custom tag definition and use, 7-15
data access, starter sample, 3-21
data-access JavaBean samples, 9-23
DBBean sample, 9-23
get information, 9-10
globalization, depending on

translate_params, 8-8
globalization, not depending on

translate_params, 8-10
globals.jsa samples, 9-43
globals.jsa, application and session events, 9-46
globals.jsa, application events, 9-43
globals.jsa, global declarations, 9-49
hello page, 9-2
HttpSessionBindingListener sample, 3-13
JDBC samples, 9-12
JML datatypes example, 5-7
JML tag sample, 9-31
JspScopeListener, event handling, 9-34
JSP-servlet interaction, 3-10
page implementation class code, 6-9
query bean, 9-15
query page (simple), 9-12
shopping cart page, 9-5
SQL tag examples, 5-29
SQLJ example, 5-34
SQLJ queries, 9-39
Index-8

useBean page, 9-3
user-specified query page, 9-14
XML query output, 9-38

schema objects
for Java, 6-14
full names and short names, 6-15
loading Java files to create, 6-14
package determination, 6-15
publishing, 6-16

schema, publishjsp option, 6-48
scopes (JSP objects), 1-15
scripting elements

comments, 1-14
declarations, 1-12
expressions, 1-12
overview, 1-12
scriptlets, 1-13

scripting variables (tag libraries)
defining, 7-8
scopes, 7-9

scriptlets
overview, 1-13
vs. JavaBeans, 4-2

send_error config param, A-23
server-side JDBC driver, 4-33
server-side translation, Oracle9i deployment

loading untranslated pages into Oracle9i, 6-45
overview, 6-45
translating and publishing, publishjsp, 6-46
vs. client-side translation, 6-22

service method, JSP, B-12
servlet 2.0 environments

added support through globals.jsa, 5-38
globals.jsa sample applications, 9-43
OracleJSP application root functionality, 3-5
overview of OracleJSP functionality, 2-2

servlet containers, B-3
servlet contexts

overview, B-6
servlet context objects, B-10

servlet library, A-4
servlet path, URLs, 6-18
servlet sessions

HttpSession interface, B-4
session tracking, B-6

servlet.jar
required file, A-4
versions, A-5

servlet-JSP interaction
invoking JSP from servlet, request

dispatcher, 3-8
invoking servlet from JSP, 3-7
passing data, JSP to servlet, 3-8
passing data, servlet to JSP, 3-9
sample code, 3-10

servletName, publishjsp option, 6-49
servletName, publishservlet option, 6-70
servlets

application lifecycle management, B-7
request and response objects, B-9
review of servlet technology, B-2
servlet configuration objects, B-11
servlet containers, B-3
servlet context objects, B-10
servlet contexts, B-6
servlet interface, B-3
servlet invocation, B-8
servlet objects, B-9
servlet sessions, B-4
session objects, B-10
session sharing, JSP, Apache/JServ, 4-42
technical background, B-2
wrapping servlet with JSP page, 4-39

sess_sh--see session shell
session events

with globals.jsa, 5-45
with HttpSessionBindingListener, 3-12
with JspScopeListener, 5-33

session object (implicit), 1-16
session objects, servlets, B-10
session scope (JSP objects), 1-15
session sharing

overview, JSP-servlet, Apache/JServ, 4-42
session_sharing config param, A-24

session shell tool
createcontext command, 6-17
java command, 6-68
key commands, 6-43
key syntax elements, 6-42
overview, 6-42
 Index-9

publishjsp command, 6-46
publishservlet command, 6-69
unpublishjsp command, 6-58
unpublishservlet command, 6-72

session support
default session requests, 3-6
overview, 3-6
through globals.jsa, 5-39

session tracking, B-6
session_OnEnd tag, globals.jsa, 5-46
session_OnStart tag, globals.jsa, 5-45
session_sharing config param, A-24
set tag, compile-time JML, C-11
setContentType() method, globalization

support, 8-4
setProperty tag, 1-18
setProperty tag, compile-time JML, C-10
setReqCharacterEncoding() method, multibyte

parameter encoding, 8-5
short names, schema objects, 6-15
showVersion, publishjsp option, 6-47
source file location, ojspc srcdir option, 6-37
SQL tags

examples, 5-29
overview, tag list, 5-24
requirements, 5-25

SQLJ
JSP code example, 5-34
ojspc S option for SQLJ options, 6-35
OracleJSP support, 5-34
publishing SQLJSP pages with publishjsp, 6-55
required files for use in JSP, A-5
sample applications, 9-39
server-side SQLJ options, 6-56
setting Oracle SQLJ options, 5-37
sqljcmd config param, A-24
sqljsp files, 5-37
triggering SQLJ translator, 5-37

sqljcmd config param, A-24
sqljsp files for SQLJ, 5-37
srcdir, ojspc option, 6-37
SSL sessions, B-6
stateless, publishjsp option, 6-50
stateless, publishservlet option, 6-70
statement caching

overview, 4-10
through OracleJSP ConnBean, 5-14
through OracleJSP ConnCacheBean, 5-16

static files, Oracle9i Servlet Engine, 6-20
static include

directive, 1-11
logistics, 4-13
vs. dynamic include, 4-12

static text
external resource file, 4-17
external resource, ojspc extres option, 6-33
external_resource parameter, A-21
generated inner class, 6-3
workaround for large static content, 4-16

styleSheet tag, JML, 5-10
Sun Microsystems JSWDK--see JSWDK
syntax (overview), 1-10
system requirements for OracleJSP, A-2

T
tag handlers (tag libraries)

access to outer tag handlers, 7-10
overview, 7-4
sample tag handler class, 7-16
tags with bodies, 7-6
tags without bodies, 7-6

tag libraries
defining and using, end-to-end example, 7-15
Oracle JML tag descriptions, 7-30
Oracle JML tags, overview, 7-20
Oracle SQL tags, 5-24
overview, 1-23
overview of standard implementation, 7-2
runtime vs. compile-time implementations, C-2
scripting variables, 7-8
standard framework, 7-2
strategy, when to create, 4-14
tag handlers, 7-4
tag library description files, 7-11
tag-extra-info classes, 7-8
taglib directive, 7-14
web.xml use, 7-12

tag library description files
defining shortcut URI in web.xml, 7-13
Index-10

for Oracle JML tags, 7-22
for Oracle SQL tags, 5-25
general features, 7-11
sample file, 7-18

tag-extra-info classes (tag libraries)
general use, getVariableInfo() method, 7-9
sample tag-extra-info class, 7-17

taglib directive
compile-time JML, C-3
for Oracle JML tags, 7-22
for Oracle SQL tags, 5-25
general use, 7-14
syntax, 1-11
use of full TLD name and location, 7-14
use of shortcut URI, 7-14

tips
avoid JSP use with binary data, 4-22
JavaBeans vs. scriptlets, 4-2
JSP page as servlet wrapper, 4-39
JSP preservation of white space, 4-20
key configuration issues, 4-24
method vs. member variable declaration, 4-18
page directive characteristics, 4-19
static vs. dynamic includes, 4-12
using a "checker" page, 4-15
when to create tag libraries, 4-14
workaround, large static content, 4-16

TLD file--see tag library description file
Tomcat

classpath configuration, A-10
config, map file name extensions, A-12
setting configuration parameters, A-28
support for OracleJSP, 2-11

tools
for deployment to Oracle9i, 6-26
ojspc for client-side translation, 6-26
overview of loadjava (load to Oracle9i), 6-40
overview of session shell, 6-42

transform tag, JML, 5-10
translate_params config param

code equivalent, 8-7
effect in overriding non-multibyte servlet

containers, 8-6
general information, A-25
globalization sample depending on it, 8-8

globalization sample not depending on it, 8-10
overview, multibyte parameter encoding, 8-6

translation
client-side pre-translation (for OSE), 6-59
on-demand (runtime), 1-7
server-side pre-translation (for OSE), 6-46
server-side vs. client-side (for OSE), 6-22

translator
generated class names, 6-6
generated code features, 6-3
generated files, 6-7
generated inner class, static text, 6-3
generated names, general conventions, 6-4
generated package names, 6-6
output file locations, 6-9
sample generated code, 6-9

translator.zip, required file for SQLJ, A-5

U
unpublishjsp command, 6-58
unpublishservlet command, 6-72
unsafe_reload config param, A-26
update batching

overview, 4-11
through OracleJSP ConnBean, 5-14

URLs
context path, 6-17
for Oracle9i Servlet Engine, 6-17
servlet path, 6-18
URL rewriting, B-6

usage, publishjsp option, 6-47
useBean tag

sample application, 9-3
syntax, 1-18

useBean tag, compile-time JML, C-9
useCookie tag, JML, 7-32
useForm tag, JML, 7-31
useVariable tag, JML, 7-30

V
verbose, ojspc option, 6-37
verbose, publishjsp option, 6-50
version number, OracleJSP, code to display, 2-19
 Index-11

version, ojspc option, 6-38
virtual path (in OSE URLs), 6-17
virtualpath, publishjsp option, 6-48
virtualpath, publishservlet option, 6-70

W
WAR deployment, 6-77
Web application hierarchy, B-9
Web-to-go, OracleJSP support, 2-10
web.xml, usage for tag libraries, 7-12
when tag, JML, 7-35
wrapping servlet with JSP page, 4-39

X
xmlparserv2.jar, required file, A-4
XML/XSL support

JML tags for XSL stylesheets, 5-10
overview, 5-9
sample application, 9-38
XML-alternative syntax, 5-9
XSL transformation example, 5-11

xsu12.jar or xsu111.jar, optional file, A-4
Index-12

	Send Us Your Comments
	Preface
	1 General Overview
	Introduction to JavaServer Pages
	What a JSP Page Looks Like
	Convenience of JSP Coding Versus Servlet Coding
	Separation of Business Logic from Page Presentation—Calling JavaBeans
	JSP Pages and Alternative Markup Languages

	JSP Execution
	JSP Containers in a Nutshell
	JSP Pages and On-Demand Translation
	Requesting a JSP Page

	Overview of JSP Syntax Elements
	Directives
	Scripting Elements
	JSP Objects and Scopes
	JSP Actions and the <jsp: > Tag Set
	Tag Libraries

	2 Overview of Oracle’s JSP Implementation
	Portability and Functionality Across Servlet Environments
	OracleJSP Portability
	OracleJSP Extended Functionality for Servlet 2.0 Environments

	Support for OracleJSP in Oracle Environments
	Overview of the Oracle9i Servlet Engine (OSE)
	Overview of the Oracle9i Application Server
	Role of the Oracle HTTP Server, Powered by Apache
	Oracle Web Application Data-Access Strategies
	Overview of Other Oracle JSP Environments

	Support for OracleJSP in Non-Oracle Environments
	Overview of OracleJSP Programmatic Extensions
	Overview of Portable OracleJSP Extensions
	Overview of Oracle-Specific Extensions
	Use of OracleJSP with Oracle PL/SQL Server Pages

	Summary of OracleJSP Releases and Feature Sets
	OracleJSP Releases Provided with Oracle Platforms
	OracleJSP Feature Notes for Previous Releases

	OracleJSP Execution Models
	On-Demand Translation Model
	Oracle9i Servlet Engine Pre-Translation Model

	Oracle JDeveloper Support for OracleJSP

	3 Basics
	Preliminary Considerations
	Installation and Configuration Overview
	Development Environments Versus Deployment Environments
	Client-Side Considerations

	Application Root and Doc Root Functionality
	Application Roots in Servlet 2.2 Environments
	OracleJSP Application Root Functionality in Servlet 2.0 Environments

	Overview of JSP Applications and Sessions
	General OracleJSP Application and Session Support
	JSP Default Session Requests

	JSP-Servlet Interaction
	Invoking a Servlet from a JSP Page
	Passing Data to a Servlet Invoked from a JSP Page
	Invoking a JSP Page from a Servlet
	Passing Data Between a JSP Page and a Servlet
	JSP-Servlet Interaction Samples

	JSP Resource Management
	Standard Session Resource Management—HttpSessionBindingListener
	Overview of Oracle Extensions for Resource Management

	JSP Runtime Error Processing
	Using JSP Error Pages
	JSP Error Page Example

	JSP Starter Sample for Data Access

	4 Key Considerations
	General JSP Programming Strategies, Tips, and Traps
	JavaBeans Versus Scriptlets
	Use of Enterprise JavaBeans in JSP Pages
	Use of JDBC Performance Enhancement Features
	Static Includes Versus Dynamic Includes
	When to Consider Creating and Using JSP Tag Libraries
	Use of a Central Checker Page
	Workarounds for Large Static Content in JSP Pages
	Method Variable Declarations Versus Member Variable Declarations
	Page Directive Characteristics
	JSP Preservation of White Space and Use with Binary Data

	Key OracleJSP Configuration Issues
	Optimization of JSP Execution
	Classpath and Class Loader Issues (Non-OSE Only)

	OracleJSP Runtime Page and Class Reloading (Non-OSE Only)
	Dynamic Page Retranslation
	Dynamic Page Reloading
	Dynamic Class Reloading

	Considerations for the Oracle9i Servlet Engine
	Introduction to the Oracle JVM and JDBC Server-Side Internal Driver
	Database Connections Through Java
	Use of JNDI by the Oracle9i Servlet Engine
	Equivalent Code for OracleJSP Runtime Configuration Parameters

	Considerations for Apache/JServ Servlet Environments
	Use of Apache/JServ in the Oracle9i Application Server
	Dynamic Includes and Forwards in Apache/JServ
	Application Framework for Apache/JServ
	JSP and Servlet Session Sharing
	Directory Alias Translation

	5 OracleJSP Extensions
	Portable OracleJSP Programming Extensions
	JML Extended Datatypes
	OracleJSP Support for XML and XSL
	Oracle Data-Access JavaBeans
	OracleJSP Tag Library for SQL

	Oracle-Specific Programming Extensions
	OracleJSP Event Handling—JspScopeListener
	OracleJSP Support for Oracle SQLJ

	OracleJSP Application and Session Support for Servlet 2.0
	Overview of globals.jsa Functionality
	Overview of globals.jsa Syntax and Semantics
	The globals.jsa Event Handlers
	Global Declarations and Directives

	6 JSP Translation and Deployment
	Functionality of the OracleJSP Translator
	Generated Code Features
	General Conventions for Output Names
	Generated Package and Class Names (On-Demand Translation)
	Generated Files and Locations (On-Demand Translation)
	Sample Page Implementation Class Source

	Overview of Features and Logistics in Deployment to Oracle9i
	Database Schema Objects for Java
	Oracle HTTP Server as a Front-End Web Server
	URLs for the Oracle9i Servlet Engine
	Static Files for JSP Applications in the Oracle9i Servlet Engine
	Server-Side Versus Client-Side Translation
	Overview of Hotloaded Classes in Oracle9i

	Tools and Commands for Translation and Deployment to Oracle9i
	The ojspc Pre-Translation Tool
	Overview of the loadjava Tool
	Overview of the sess_sh Session Shell Tool

	Deployment to Oracle9i with Server-Side Translation
	Loading Untranslated JSP Pages into Oracle9i (loadjava)
	Translating and Publishing JSP Pages in Oracle9i (Session Shell publishjsp)

	Deployment to Oracle9i with Client-Side Translation
	Pre-Translating JSP Pages (ojspc)
	Loading Translated JSP Pages into Oracle9i (loadjava)
	Hotloading Page Implementation Classes in Oracle9i
	Publishing Translated JSP Pages in Oracle9i (Session Shell publishservlet)

	Additional JSP Deployment Considerations
	Doc Root for Oracle9i Application Server Versus Oracle9i Servlet Engine
	Use of ojspc for Pre-Translation for Non-OSE Environments
	General JSP Pre-Translation Without Execution
	Deployment of Binary Files Only
	WAR Deployment
	Deployment of JSP Pages with JDeveloper

	7 JSP Tag Libraries and the Oracle JML Tags
	Standard Tag Library Framework
	Overview of a Custom Tag Library Implementation
	Tag Handlers
	Scripting Variables and Tag-Extra-Info Classes
	Access to Outer Tag Handler Instances
	Tag Library Description Files
	Use of web.xml for Tag Libraries
	The taglib Directive
	End-to-End Example: Defining and Using a Custom Tag

	Overview of the JSP Markup Language (JML) Sample Tag Library
	JML Tag Library Philosophy
	JML Tag Categories
	JML Tag Library Description File and taglib Directive

	JSP Markup Language (JML) Tag Descriptions
	Syntax Symbology and Notes
	Bean Binding Tag Descriptions
	Logic and Flow Control Tag Descriptions

	8 OracleJSP Globalization Support
	Content Type Settings in the page Directive
	Dynamic Content Type Settings
	OracleJSP Extended Support for Multibyte Parameter Encoding
	The setReqCharacterEncoding() Method
	The translate_params Configuration Parameter

	9 Sample Applications
	Basic Samples
	Hello Page—hellouser.jsp
	Usebean Page—usebean.jsp
	Shopping Cart Page—cart.jsp
	Information Page—info.jsp

	JDBC Samples
	Simple Query—SimpleQuery.jsp
	User-Specified Query—JDBCQuery.jsp
	Query Using a Query Bean—UseHtmlQueryBean.jsp
	Connection Caching—ConnCache3.jsp and ConnCache1.jsp

	Data-Access JavaBean Samples
	Page Using DBBean—DBBeanDemo.jsp
	Page Using ConnBean—ConnBeanDemo.jsp
	Page Using CursorBean—CursorBeanDemo.jsp
	Page Using ConnCacheBean—ConnCacheBeanDemo.jsp

	Custom Tag Samples
	JML Tag Sample—hellouser_jml.jsp
	Pointers to Additional Custom Tag Samples

	Samples for Oracle-Specific Programming Extensions
	Page Using JspScopeListener—scope.jsp
	XML Query—XMLQuery.jsp
	SQLJ Queries—SQLJSelectInto.sqljsp and SQLJIterator.sqljsp

	Samples Using globals.jsa for Servlet 2.0 Environments
	globals.jsa Example for Application Events—lotto.jsp
	globals.jsa Example for Application and Session Events—index1.jsp
	globals.jsa Example for Global Declarations—index2.jsp

	A General Installation and Configuration
	System Requirements
	OracleJSP Installation and Web Server Configuration
	Required and Optional Files for OracleJSP
	Configuration of Web Server and Servlet Environment to Run OracleJSP

	OracleJSP Configuration
	OracleJSP Configuration Parameters (Non-OSE)
	OracleJSP Configuration Parameter Settings

	B Servlet and JSP Technical Background
	Background on Servlets
	Review of Servlet Technology
	The Servlet Interface
	Servlet Containers
	Servlet Sessions
	Servlet Contexts
	Application Lifecycle Management Through Event Listeners
	Servlet Invocation

	Web Application Hierarchy
	Standard JSP Interfaces and Methods

	C Compile-Time JML Tag Support
	JML Compile-Time Versus Runtime Considerations and Logistics
	General Compile-Time Versus Runtime Considerations
	The taglib Directive for Compile-Time JML Support

	JML Compile-Time/1.0.0.6.x Syntax Support
	JML Bean References and Expressions, Compile-Time Implementation
	Attribute Settings with JML Expressions

	JML Compile-Time/1.0.0.6.x Tag Support
	JML Tag Summary, 1.0.0.6.x/Compile-Time Versus 1.1.x.x/Runtime
	Descriptions of Additional JML Tags, Compile-Time Implementation

	Index

